249
Views
8
CrossRef citations to date
0
Altmetric
Articles

Virtual screening of chemical compounds active against breast cancer cell lines based on cell cycle modelling, prediction of cytotoxicity and interaction with targetsFootnote

, , , , &
Pages 595-604 | Received 19 Jun 2015, Accepted 22 Jul 2015, Published online: 11 Sep 2015

References

  • P. Vera-Licona, E. Bonnet, E. Barillot, and A. Zinovyev, OCSANA: Optimal combinations of interventions from network analysis, Bioinformatics 29 (2013), pp. 1571–1573.
  • M.P. Menden, F. Iorio, M. Garnett, U. McDermott, C.H. Benes, P.J. Ballester, and J. Saez-Rodriguez, Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties, PLoS One 8 (2013), pp. 613–618.
  • J. Lamb, E.D. Crawford, D. Peck, J.W. Modell, I.C. Blat, M.J. Wrobel, J. Lerner, J.P. Brunet, A. Subramanian, K.N. Ross, M. Reich, H. Hieronymus, G. Wei, S.A. Armstrong, S.J. Haggarty, P.A. Clemons, R. Wei, S.A. Carr, E.S. Lander, and T.R. Golub, The Connectivity Map: Using gene-expression signatures to connect small molecules, genes, and disease, Science 313 (2006), pp. 1929–1935.
  • F. Iorio, T. Rittman, H. Ge, M. Menden, and J. Saez-Rodriguez, Transcriptional data: A new gateway to drug repositioning? Drug Discov. Today 18 (2013), pp. 350–357.
  • J. Gasteiger, Some solved and unsolved problems of chemoinformatics, SAR QSAR Environ. Res. 25 (2014), pp. 443–455.
  • S. Erić, M. Kalinić, K. Ilić, and M. Zloh, Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein, SAR QSAR Environ. Res. 25 (2014), pp. 939–966.
  • L. Du, X. Qian, C. Dai, L. Wang, D. Huang, S. Wang, and X. Shen, Screening the molecular targets of ovarian cancer based on bioinformatics analysis, preprint (2015). Available at http://www.tumorijournal.com/.
  • J.L. Medina-Franco and J. Yoo, Molecular modeling and virtual screening of DNA methyltransferase inhibitors, Curr. Pharm. Des. 19 (2013), pp. 2138–2147.
  • A.L. MacLean, Z. Rosen, H.M. Byrne, and H.A. Harrington, Parameter-free methods distinguish Wnt pathway models and guide design of experiments, Proc. Natl. Acad. Sci. USA112 (2015), pp. 2652-2657.
  • O.N. Koborova, D.A. Filimonov, A.V. Zakharov, A.A. Lagunin, S.M. Ivanov, A. Kel, and V.V. Poroikov, In silico method for identification of promising anticancer drug targets, SAR QSAR Environ. Res. 20 (2009), pp. 755–766.
  • P. Warnault, A. Yasri, M. Coisy-Quivy, G. Chevé, C. Boriès, B. Fauvel, and R. Benhida, Recent advances in drug design of epidermal growth factor receptor inhibitors, Curr. Med. Chem. 20 (2013), pp. 2043–2067.
  • G.H. Liand and J.F. Huang, CDRUG: A web server for predicting anticancer activity of chemical compounds, Bioinformatics 28 (2012), pp. 3334–3335.
  • D. Kong and T. Yamori, JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs, Bioorg. Med. Chem. 20 (2012), pp. 1947–1951.
  • A. Speck-Planche, V.V. Kleandrova, F. Luan, and M.N. Cordeiro, Chemoinformatics in anti-cancer chemotherapy: Multi-target QSAR model for the in silico discovery of anti-breast cancer agent, Eur. J. Pharm. Sci. 47 (2012), pp. 273–279.
  • W.D. Foulkes, I.E. Smith, and J.S. Reis-Filho, Triple-negative breast cancer, N. Engl. J. Med. 363 (2010), pp. 1938–1948.
  • C. Choi, M. Krull, A. Kel, O. Kel-Margoulis, S. Pistor, A. Potapov, N. Voss, and E. Wingender, TRANSPATH – a high quality database focused on signal transduction, Comp. Funct. Genomics 5 (2004), pp. 163–168.
  • M.J. Berridge, Module 9: Cell Cycle and Proliferation, Cell Signalling Biology 6 (2014), Portland Press Limited, doi:10.1042/csb0001009.
  • S.E. Logue and S.J. Martin, Caspase activation cascades in apoptosis, Biochem. Soc. Trans. 36 (2008), pp. 1–9.
  • G.I. Evan and K.H. Vousden, Proliferation, cell cycle and apoptosis in cancer, Nature 411 (2001), pp. 342–348.
  • A. Borgne and R.M. Golsteyn, The role of cyclin-dependent kinases in apoptosis, Prog Cell Cycle Res. 5 (2003), pp. 453–459.
  • N. Kolesnikov, E. Hastings, M. Keays, O. Melnichuk, Y.A. Tang, E. Williams, M. Dylag, N. Kurbatova, M. Brandizi, T. Burdett, K. Megy, E. Pilicheva, G. Rustici, A. Tikhonov, H. Parkinson, R. Petryszak, U. Sarkans, and A. Brazma, ArrayExpress update – simplifying data submissions, Nucleic Acids Res. 43 (2015), pp. D1113–D1116.
  • Net2Target computer program, Certificate of Russian Patent Agency № 2014660877.
  • Thomson Reuters IntegritySM. Thomson ReutersTM; software available at http://thomsonreuters.com/en/products-services/pharma-life-sciences/pharmaceutical-research/integrity.html.
  • D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskii, P.V. Pogodin, and V.V. Poroikov, Prediction of the biological activity spectra of organic compounds using the PASS online web resource, Chem. Heterocycl. Compd. 50 (2014), pp. 444–457.
  • V.V. Poroikov, D.A. Filimonov, Yu.V. Borodina, A.A. Lagunin, and A. Kos, Robustness of biological activity spectra predicting by computer program PASS for non-congeneric sets of chemical compounds, J. Chem. Inform. Comput. Sci. 40 (2000), pp. 1349–1355.
  • V.V. Poroikov, D.A. Filimonov, W.-D. Ihlenfeldt, T.A. Gloriozova, A.A. Lagunin, Yu.V. Borodina, A.V. Stepanchikova, and M.C. Nicklaus, PASS biological activity spectrum predictions in the enhanced open NCI database browser, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 228–236.
  • A.P. Bento, A. Gaulton, A. Hersey, L.J. Bellis, J. Chambers, M. Davies, F.A. Kruger, Y. Light, L. Mak, S. McGlinchey, M. Nowotka, G. Papadatos, R. Santos, and J.P. Overington, The ChEMBL bioactivity database: An update, Nucleic Acids Res. 42 (2014), pp. 1083–1090.
  • Asinex, chemical library. Available at http://www.asinex.com/.
  • ChemBlock, chemical library. Available at http://www.chemblock.com/.
  • ChemBridge, chemical library. Available at http://www.chembridge.com/.
  • InterBioScreen, chemical library. Available at http://www.ibscreen.com/.
  • M.V. Berridge, P.M. Herst, and A.S. Tan, Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction, Biotechnol. Annu. Rev. 11 (2005), pp. 127–152.
  • A. Lindqvist, V. Rodríguez-Bravo, and R.H. Medema, The decision to enter mitosis: Feedback and redundancy in the mitotic entry network, J. Cell Biol. 185 (2009), pp. 193–202.
  • P.J. Roberts, J.E. Bisi, J.C. Strum, A.J. Combest, D.B. Darr, J.E. Usary, W.C. Zamboni, K.K. Wong, C.M. Perou, and N.E. Sharpless, Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy, J. Natl. Cancer Inst. 104 (2012), pp. 476–487.
  • W. Haeusgen, T. Herdegen, and V. Waetzig, The bottleneck of JNK signaling: Molecular and functional characteristics of MKK4 and MKK7, Eur. J. Cell Biol. 90 (2011), pp. 536–544.
  • G. Remy, A.M. Risco, F.A. Iñesta-Vaquera, B. González-Terán, G. Sabio, R.J. Davis, and A. Cuenda, Differential activation of p38MAPK isoforms by MKK6 and MKK3, Cell Signal. 22 (2010), pp. 660–667.
  • Y. Dong, K. Nakagawa-Goto, C.Y. Lai, Y. Kim, S.L. Morris-Natschke, E.Y. Lee, K.F. Bastow, and K.H. Lee, Structure-activity relationship and in vivo studies of novel 2-(furan-2-yl)naphthalen-1-ol (FNO) analogs as potent and selective anti-breast cancer agents, Bioorg. Med. Chem. Lett. 21 (2011), pp. 52–57.
  • C.L. Lee, Y.T. Lin, F.R. Chang, G.Y. Chen, A. Backlund, J.C. Yang, S.L. Chen, and Y.C. Wu, Synthesis and biological evaluation of phenanthrenes as cytotoxic agents with pharmacophore modeling and ChemGPS-NP prediction as Topo II inhibitors, PLoS ONE 7 (2012), p. e37897.
  • J.C. Boik and R.A. Newman, Structure-activity models of oral clearance, cytotoxicity, and LD50: A screen for promising anticancer compounds, BMC Pharmacol. 8 (2008), p. 12.
  • R.P. Verma and C.A. Hansch, QSAR study on the cytotoxicity of podophyllotoxin analogues against various cancer cell lines, Med. Chem. 6 (2010), pp. 79–86.
  • S. Nandi, M. Vracko, and M.C. Bagchi, Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks, Chem. Biol. Drug Des. 70 (2007), pp. 424–436.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.