432
Views
43
CrossRef citations to date
0
Altmetric
Articles

A quantitative approach to polar organic reactivityFootnote

&
Pages 619-646 | Received 23 Jun 2015, Accepted 28 Jul 2015, Published online: 28 Aug 2015

References

  • F.A. Quintero, S.J. Patel, F. Muñoz, and M.S. Mannan, Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system, Ind. Eng. Chem. Res. 51 (2012), pp. 16101–16115.
  • A.P. Worth, The role of QSAR methodology in the regulatory assessment of chemicals, in Recent Advances in QSAR Studies, T. Puzyn, J. Leszczynski, and M.T. Cronin, eds., Springer, Dordrecht, 2010, pp. 367–382.
  • Organization for Economic Cooperation and Development (OECD), Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, ENV/JM/MONO(2007)2, OECD Environment Health and Safety Publications, Series on Testing and Assessment, No. 69, Paris (30 March 2007).
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, ATLA, Altern. Lab. Anim. 33 (2005), pp. 445–459.
  • T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships, ATLA, Altern. Lab. Anim. 33 (2005), pp. 155–173.
  • A. Bassan and A.P. Worth, The integrated use of models for the properties and effects of chemicals by means of a structured workflow, QSAR Comb. Sci. 27 (2008), pp. 6–20.
  • T. Puzyn, J. Leszczynski, and M.T. Cronin, Recent Advances in QSAR Studies, Springer, Dordrecht, 2010.
  • C. Hansch, P.P. Maloney, T. Fujita, and R.M. Muir, Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients, Nature 194 (1962), pp. 178–180.
  • C. Hansch and A. Leo, Exploring QSAR: Fundamentals and Applications in Chemistry and Biology, S.R. Heller, ed., American Chemical Society, Washington DC, 1995.
  • E. Lo Piparo and A. Worth, Review of QSAR models and software tools for predicting developmental and reproductive toxicity, Publications Office of the European Union, Luxembourg (2010), available at doi:10.2788/9628.
  • J. Verma, V.M. Khedkar, and E.C. Coutinho, 3D-QSAR in drug design - A review, Curr. Top. Med. Chem. 10 (2010), pp. 95–115.
  • M.G. Damale, S.N. Harke, F.A.K. Khan, D.B. Shinde, and J.N. Sangshetti, Recent advances in multidimensional QSAR (4D–6D): A critical review, Mini-Rev. Med. Chem. 14 (2014), pp. 35–55.
  • C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul, A practcial overview of quantitative structure-activity relationship, EXCLI J. 8 (2009), pp. 74–88.
  • G. Schüürmann, R.U. Ebert, and R. Kühne, Quantitative read-across for predicting the acute fish toxicity of organic compounds, Environ. Sci. Technol. 10 (2011), pp. 4616–4622.
  • J.A.H. Schwöbel, Y.K. Koleva, S.J. Enoch, F. Bajot, M. Hewitt, J.C. Madden, D.W. Roberts, T.W. Schultz, and M.T.D. Cronin, Measurement and estimation of electrophilic reactivity for predictive toxicology, Chem. Rev. 111 (2011), pp. 2562–2596.
  • M. Gersch, J. Kreuzer, and S.A. Sieber, Electrophilic natural products and their biological targets, Nat. Prod. Rep. 29 (2012), pp. 659–682.
  • M.T. Cronin, F. Bajot, S.J. Enoch, J.C. Madden, D.W. Roberts, and J. Schwöbel, The in chemico–in silico interface: Challenges for integrating experimental and computational chemistry to identify toxicity, ATLA, Altern. Lab. Anim. 37 (2009), pp. 513–521.
  • P. Muller, Glossary of terms used in physical organic chemistry, Pure Appl. Chem. 66 (1994), pp. 1077–1184.
  • IUPAC Compendium of Chemical Terminology–Gold Book, Version 2.3.3 (24 February 2014), http://goldbook.iupac.org/.
  • R.G. Pearson, H. Sobel, and J. Songstad, Nucleophilic reactivity constants toward methyl iodide and trans-[Pt(py)2Cl2], J. Am. Chem. Soc. 90 (1968), pp. 319–326.
  • C.G. Swain and C.B. Scott, Quantitative correlation of relative rates. Comparison of hydroxide ion with other nucleophilic reagents toward alkyl halides, esters, epoxides and acyl halides, J. Am. Chem. Soc. 75 (1953), pp. 141–147.
  • C.D. Ritchie, Cation–anion combination reactions. 26. A review, Can. J. Chem. 64 (1986), pp. 2239–2250.
  • L.A.P. Kane-Maguire, E.D. Honig, and D.A. Sweigart, Nucleophilic addition to coordinated cyclic π-hydrocarbons: Mechanistic and synthetic studies, Chem. Rev. 84 (1984), pp. 525–543.
  • C.K.M. Heo and J.W. Bunting, Nucleophilicity towards a vinylic carbon atom: Rate constants for the addition of amines to the 1-methyl-4-vinylpyridinium cation in aqueous solution, J. Chem. Soc., Perkin Trans. 2 (1994), pp. 2279–2290.
  • J.W. Bunting, J.M. Mason, and C.K.M. Heo, Nucleophilicity towards a saturated carbon atom: Rate constants for the aminolysis of methyl 4-nitrobenzenesulfonate in aqueous solution. A comparison of the n and N+ parameters for amine nucleophilicity, J. Chem. Soc., Perkin Trans. 2 (1994), pp. 2291–2300.
  • J.O. Edwards, Polarizability, basicity and nucleophilic character, J. Am. Chem. Soc. 78 (1956), 78, pp. 1819–1820.
  • H. Mayr, R. Schneider, C. Schade, J. Bartl, and R. Bederke, Addition reactions of diarylcarbenium ions to 2-methyl-1-pentene: Kinetic method and reaction mechanism, J. Am. Chem. Soc. 112 (1990), pp. 4446–4454.
  • H. Mayr, R. Schneider, B. Irrgang, and C. Schade, Kinetics of the reactions of the p-methoxy-substituted benzhydryl cation with various alkenes and 1,3-dienes, J. Am. Chem. Soc. 112 (1990), pp. 4454–4459.
  • H. Mayr, R. Schneider, and U. Grabis, Linear free energy and reactivity-selectivity relationships in reactions of diarylcarbenium Ions with π-nucleophiles, J. Am. Chem. Soc. 112 (1990), pp. 4460–4467.
  • Y. Wang and L.M. Dorfman, Reactivity of benzyl cation and of benzhydryl cation with alkenes in solution: Initiation step in cationic polymerization, Macromolecules 13 (1980), pp. 63–65.
  • H. Mayr and A.R. Ofial, Do general nucleophilicity scales exist? J. Phys. Org. Chem. 21 (2008), pp. 584–595.
  • R. Schneider, H. Mayr, and P.H. Plesch, Ionisation and dissociation of diarylmethyl chlorides in BCl3/CH2Cl2 solution: Spectroscopic evidence for carbenium ion pairs, Ber. Bunsenges. Phys. Chem. 91 (1987), pp. 1369–1374.
  • F. Corral Bautista, R. Appel, and J.S. Frickel, and H. Mayr, Quantification of ion-pairing effects on the nucleophilic reactivities of benzoyl- and phenyl-substituted carbanions in dimethylsulfoxide, Chem. Eur. J. 21 (2015), pp. 875–884.
  • H. Mayr and M. Patz, Scales of nucleophilicity and electrophilicity: A system for ordering polar organic and organometallic reactions, Angew. Chem. Int. Ed. Engl. 33 (1994), pp. 938–957.
  • H. Mayr, T. Bug, M.F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A.R. Ofial, G. Remennikov, and H. Schimmel, Reference scales for the characterization of cationic electrophiles and neutral nucleophiles, J. Am. Chem. Soc. 123 (2001), pp. 9500–9512.
  • R. Lucius, R. Loos, and H. Mayr, Kinetics of carbocation carbanion combinations: Key to a general concept of polar organic reactivity, Angew. Chem. Int. Ed. 41 (2002), pp. 91–95.
  • H. Mayr and A.R. Ofial, Und es geht doch: Nucleophilieskalen für die Syntheseplanung, Nachr. Chem. 56 (2008), pp. 871–877.
  • H. Mayr, Reactivity scales for quantifying polar organic reactivity: The benzhydrylium methodology, Tetrahedron 71 (2015), pp. 5095–5111.
  • H. Mayr, Reply to T. W. Bentley: Limitations of the s(E + N) and related equations, Angew. Chem. Int. Ed. 50 (2011), pp. 3612–3618.
  • F. Brotzel, Y.C. Chu, and H. Mayr, Nucleophilicities of primary and secondary amines in water, J. Org. Chem. 72 (2007), pp. 3679–3688.
  • H.F. Schaller, A.A. Tishkov, X. Feng, and H. Mayr, Direct observation of the ionization step in solvolysis reactions: Electrophilicity versus electrofugality of carbocations, J. Am. Chem. Soc. 130 (2008), pp. 3012–3022.
  • F. Brotzel and H. Mayr, Nucleophilicities of amino acids and peptides, Org. Biomol. Chem. 5 (2007), pp. 3814–3820.
  • M. Breugst, and F. Corral Bautista, and H. Mayr, Nucleophilic reactivities of the anions of nucleobases and their subunits, Chem. Eur. J. 18 (2012), pp. 127–137.
  • H. Asahara and H. Mayr, Electrophilicities of bissulfonyl ethylenes, Chem. Asian J. 7 (2012), pp. 1401–1407.
  • R. Appel, S. Chelli, T. Tokuyasu, K. Troshin, and H. Mayr, Electrophilicities of benzaldehyde-derived iminium Ions: Quantification of the electrophilic activation of aldehydes by iminium formation, J. Am. Chem. Soc. 135 (2013), pp. 6579–6587.
  • T.B. Phan, M. Breugst, and H. Mayr, Towards a general scale of nucleophilicity? Angew. Chem. Int. Ed. 45 (2006), pp. 3869–3874.
  • H. Mayr, B. Kempf, and A.R. Ofial, π-Nucleophilicity in carbon-carbon bond-forming reactions, Acc. Chem. Res. 36 (2003), pp. 66–77.
  • S. Minegishi and H. Mayr, How constant are Ritchie’s "Constant Selectivity Relationships"? – A general reactivity scale for n-, π-, and σ-nucleophiles, J. Am. Chem. Soc. 125 (2003), pp. 286–295.
  • M. Horn and H. Mayr, A comprehensive view on stabilities and reactivities of triarylmethyl cations (tritylium ions), J. Phys. Org. Chem. 25 (2012), pp. 979–988.
  • A.R. Ofial, Benzhydrylium and tritylium ions: Complementary probes for examining ambident nucleophiles, Pure Appl. Chem. 87 (2015), pp. 341–351.
  • A.R. Ofial and H. Mayr, Ene reactions of alkynes for the stereoselective synthesis of allylamines, Angew. Chem. Int. Ed. Engl. 36 (1997), pp. 143–145.
  • D.S. Allgäuer and H. Mayr, Electrophilicities of 1,2-disubstituted ethylenes, Eur. J. Org. Chem. (2014), pp. 2956–2963.
  • J. Sauer, H. Wiest, and A. Mielert, Die Reaktivität von Dienophilen gegenüber Cyclopentadien und 9.10-Dimethyl-anthracen, Chem. Ber. 97 (1964), pp. 3183–3207.
  • M. Baidya, S. Kobayashi, F. Brotzel, U. Schmidhammer, E. Riedle, and H. Mayr, DABCO or DMAP – Why are they different in organocatalysis? Angew. Chem. Int. Ed. 46 (2007), pp. 6176–6179.
  • H. Mayr, J. Ammer, M. Baidya, B. Maji, T.A. Nigst, A.R. Ofial, and T. Singer, Scales of Lewis basicities toward C-centered Lewis acids (carbocations), J. Am. Chem. Soc. 137 (2015), pp. 2580–2599.
  • H. Mayr, M. Breugst, and A.R. Ofial, Farewell to the HSAB treatment of ambident reactivity, Angew. Chem. Int. Ed. 50 (2011), pp. 6470–6505.
  • http://www.cup.uni-muenchen.de/oc/mayr/DBintro.html.
  • E. Chamorro, M. Duque-Norena, R. Notario, and P. Perez, Intrinsic relative scales of electrophilicity and nucleophilicity, J Phys Chem A 117 (2013), pp. 2636–2643.
  • V. Tognetti, C. Morell, and L. Joubert, Quantifying electro/nucleophilicity by partitioning the dual descriptor, J. Comput. Chem. 36 (2015), pp. 649–659.
  • E. Chamorro and J. Melin, On the intrinsic reactivity index for electrophilicity/nucleophilicity responses, J Mol Model 21 (2015), 53.
  • S. Liu, C. Rong, and T. Lu, Information conservation principle determines electrophilicity, nucleophilicity, and regioselectivity, J. Phys. Chem. A 118 (2014), pp. 3698–3704.
  • L.-G. Zhuo, W. Liao, and Z.-X. Yu, A frontier molecular orbital theory approach to understanding the Mayr equation and to quantifying nucleophilicity and electrophilicity by using HOMO and LUMO energies, Asian J. Org. Chem. 1 (2012), pp. 336–345.
  • F. Pereira, D.A.R.S. Latino, and J. Aires-de-Sousa, Estimation of Mayr electrophilicity with a quantitative structure-property relationship approach using empirical and DFT descriptors, J. Org. Chem. 2011, 76, pp. 9312–9319.
  • S.-i Kiyooka, D. Kaneno, and R. Fujiyama, Intrinsic reactivity index as a single scale directed toward both electrophilicity and nucleophilicity using frontier molecular orbitals, Tetrahedron 69 (2013), pp. 4247–4258.
  • J. Ammer, C. Nolte, and H. Mayr, Free energy relationships for reactions of substituted benzhydrylium ions: From enthalpy- over entropy- to diffusion-control, J. Am. Chem. Soc. 134 (2012), pp. 13902–13911.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.