1,704
Views
26
CrossRef citations to date
0
Altmetric
Articles

Modelling inhibition of avian aromatase by azole pesticidesFootnote

, , &
Pages 757-782 | Received 25 Jun 2015, Accepted 26 Aug 2015, Published online: 04 Nov 2015

References

  • BirdLife International, State of the World’s Birds Indicators for our Changing World (2013). Available at http://www.birdlife.org/datazone/sowb.
  • FAO, State of the World’s Forests, 2012, Food and Agriculture Organization of the United Nations, Rome, 2012.
  • E.O. Wilson, Biodiversity, National Academy of Sciences, Washington DC, 1988.
  • I.M. Turner, Species loss in fragments of tropical rain forest: A review of the evidence, J. Appl. Ecol. 33 (1996), pp. 200–209.
  • L. Jenni and M. Kéry, Timing of autumn bird migration under climate change: Advances in long-distance migrants, delays in short-distance migrants, Proc. R. Soc. Lond. Ser. B 270 (2003), pp. 1467–1471.
  • B. Huntley, Y.C. Collingham, S.G. Willis, and R.E. Green, Potential impacts of climatic change on European breeding birds, PLoS ONE 3 (2008), p. e1439.
  • E.W. Schafer, The acute oral toxicity of 369 pesticidal, pharmaceutical and other chemicals to wild birds, Toxicol. Appl. Pharmacol. 21 (1972), pp. 315–330.
  • E.W. Schafer, W.A. Bowles, and J. Hurlbut, The acute oral toxicity, repellency, and hazard potential of 998 chemicals to one or more species of wild and domestic birds, Arch. Environ. Contam. Toxicol. 12 (1983), pp. 355–382.
  • P. Pimentel, Environmental and economic costs of the application of pesticides primarily in the United States, Environ. Develop. Sustain. 7 (2005), pp. 229–252.
  • C.M. Markey, B.S. Rubin, A.M. Soto, and C. Sonnenschein, Endocrine disruptors: From wingspread to environmental developmental biology, J. Steroid Biochem. Molec. Biol. 83 (2003), pp. 235–244.
  • J. Devillers, N. Marchand-Geneste, A. Carpy, and J.M. Porcher, SAR and QSAR modeling of endocrine disruptors, SAR QSAR Environ. Res. 17 (2006), pp. 393–412.
  • D. Ghosh, J. Griswold, M. Erman, and W. Pangborn, X-ray structure of human aromatase reveals an androgen-specific active site, J. Steroid Biochem. Molec. Biol. 118 (2010), pp. 197–202.
  • L.F.C. Castro, M.M. Santos, and M.A. Reis-Henriques, The genomic environment around the aromatase gene: Evolutionary insights, BMC Evolut. Biol. 5 (2005), p. 43.
  • B.A. Schlinger and A.P. Arnold, Brain is the major site of estrogen synthesis in a male songbird, Proc. Nation. Acad. Sci. USA 88 (1991), pp. 4191–4194.
  • J. Balthazart, M. Baillien, T.D. Charlier, C.A. Cornil, and G.F. Ball, Multiple mechanisms control brain aromatase activity at the genomic and non-genomic level, J. Steroid Biochem. Molec. Biol. 86 (2003), pp. 367–379.
  • A. Elbrecht and R.G. Smith, Aromatase enzyme activity and sex determination in chickens, Science 255 (1992), pp. 467–470.
  • S. Vaillant, M. Dorizzi, C. Pieau, and N. Richard-Mercier, Sex reversal and aromatase in chicken, J. Exp. Zool. 290 (2001), pp. 727–740.
  • C.A. Smith and A.H. Sinclair, Sex determination: Insights from the chicken, BioEssays 26 (2004), pp. 120–132.
  • J. Balthazart and A. Foidart, Brain aromatase and the control of male sexual behaviour, J. Steroid Biochem. Molec. Biol. 44 (1993), pp. 521–540.
  • J. Balthazart, M. Baillien, C.A. Cornil, and G.F. Ball, Preoptic aromatase modulates male sexual behavior: Slow and fast mechanisms of action, Physiol. Behavior 83 (2004), pp. 247–270.
  • B.A. Schlinger and G.L. Callard, Aromatization mediates aggressive behavior in quail, Gen. Comp. Endocrinol. 79 (1990), pp. 39–53.
  • C.A. Cornil, M. Taziaux, M. Baillien, G.F. Ball, and J. Balthazart, Rapid effects of aromatase inhibition on male reproductive behaviors in Japanese quail, Hormones Behavior 49 (2006), pp. 45–67.
  • J.R. Corfield, H.N. Harada, and A.N. Iwaniuk, Aromatase expression in the brain of the ruffed grouse (Bonasa umbellus) and comparisons with other galliform birds (Aves, Galliformes), J. Chem. Neuroanat. 47 (2013), pp. 15–27.
  • R.W. Brueggemeier, J.C. Hackett, and E.S. Diaz-Cruz, Aromatase inhibitors in the treatment of breast cancer, Endoc. Rev. 26 (2005), pp. 331–345.
  • E.R. Trösken, Toxicological evaluation of azole fungicides in agriculture and food chemistry, Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg, 2005.
  • J.A. Zarn, B.J. Brüschweiler, and J.R. Schlatter, Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14α-demethylase and aromatase, Environ. Health Perspect. 111 (2003), pp. 255–261.
  • G. Monod, A. De Mones, and A. Fostier, Inhibition of ovarian microsomal aromatase and follicular oestradiol secretion by imidazole fungicides in Oncorhynchus mykiss, Mar. Environ. Res. 35 (1993), pp. 153–157.
  • N. Hinfray, J.M. Porcher, and F. Brion, Inhibition of rainbow trout (Oncorhynchus mykiss) P450 aromatase activities in brain and ovarian microsomes by various environmental substances, Comp. Biochem. Physiol. Part C 144 (2006), pp. 252–262.
  • K. Kinnberg, H. Holbech, G.I. Petersen, and P. Bjerregaard, Effects of the fungicide prochloraz on the sexual development of zebrafish (Danio rerio), Comp. Biochem. Physiol. Part C 145 (2007), pp. 165–170.
  • G.T. Ankley, K.M. Jensen, E.J. Durham, E.A. Makynen, B.C. Butterworth, M.D. Kahl, D.L. Villeneuve, A. Linnum, L.E. Gray, M. Cardon, and V.S. Wilson, Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow (Pimephales promelas), Toxicol. Sci. 86 (2005), pp. 300–308.
  • S.Y. Skolness, E.J. Durhan, N. Garcia-Reyero, K.M. Jensen, M.D. Kahl, E.A. Makynen, D. Martinovic-Weigelt, E. Perkins, D.L. Villeneuve, and G.T. Ankley, Effects of a short-term exposure to the fungicide prochloraz on endocrine function and gene expression in female fathead minnows (Pimephales promelas), Aquat. Toxicol. 103 (2011), pp. 170–178.
  • S.Y. Skolness, C.A. Blanksma, J.E. Cavallin, J.J. Churchill, E.J. Durhan, K.M. Jensen, R.D. Johnson, M.D. Kahl, E.A. Makynen, D.L. Villeneuve, and G.T. Ankley, Propiconazole inhibits steroidogenesis and reproduction in the fathead minnow (Pimephales promelas), Toxicol. Sci. 132 (2013), pp. 284–297.
  • S.Y. Liu, Q. Jin, X.H. Huang, and G.N. Zhu, Disruption of zebrafish (Danio rerio) sexual development after full life-cycle exposure to environmental levels of triadimefon, Environ. Toxicol. Pharmacol. 37 (2014), pp. 468–475.
  • G. Johnston, C.H. Walker, and A. Dawson, Interactive effects between EBI fungicides (prochloraz, propiconazole and penconazole) and OP insecticides (dimethoate, chlorpyrifos, diazinon and malathion) in the hybrid red-legged partridge, Environ. Toxicol. Chem. 13 (1994), pp. 615–620.
  • S. Matsushita, J. Yamashita, T. Iwasawa, T. Tomita, and M. Ikeda, Effects of in ovo exposure to imazalil and atrazine on sexual differentiation in chick gonads, Poultry Sci. 85 (2006), pp. 1641–1647.
  • K. Grote, L. Niemann, B. Selzsam, W. Haider, C. Gericke, M. Herzler, and I. Chahoud, Epoxiconazole causes changes in testicular histology and sperm production in the japanese quail (Coturnix coturnix japonica), Environ. Toxicol. Chem. 27 (2008), pp. 2368–2374.
  • A. Lopez-Antia, M.E. Ortiz-Santaliestra, F. Mougeot, and R. Mateo, Experimental exposure of red-legged partridges (Alectoris rufa) to seeds coated with imidacloprid, thiram and difenoconazole, Ecotoxicology 22 (2013), pp. 125–138.
  • E. Bro, F. Millot, A. Decors, and J. Devillers, Quantification of potential exposure of gray partridge (Perdix perdix) to pesticide active substances in farmlands, Sci. Total Environ. 521–522 (2015), pp. 315–325.
  • B. Vyas, O. Silakari, and M. Singh Bahia, and B. Singh, Glutamine: Fructose-6-phosphate amidotransferase (GFAT): Homology modelling and designing of new inhibitors using pharmacophore and docking based hierarchical virtual screening protocol, SAR QSAR Environ. Res. 24 (2013), pp. 733–752.
  • A.K. Saxena, J. Devillers, A.R.R. Pery, R. Beaudouin, V.M. Balaramnavar, and S. Ahmed, Modelling the binding affinity of steroids to zebrafish sex hormone-binding globulin, SAR QSAR Environ. Res. 25 (2014), pp. 289–323.
  • V. Saini and A. Kumar, QSAR analyses of DDT analogues and their in silico validation using molecular docking study against voltage-gated sodium channel of Anopheles funestus, SAR QSAR Environ. Res. 25 (2014), pp. 777–790.
  • J. Wade, B.A. Schlinger, L. Hodges, and A.P. Arnold, Fadrozole: A potent and specific inhibitor of aromatase in the zebra finch brain, Gen. Comp. Endocrinol. 94 (1994), pp. 53–61.
  • J. Balthazart, P. Absil, V. Fiasse, and G.F. Ball, Effects of the aromatase inhibitor R76713 on sexual differentiation of brain and behavior in zebra finches, Behaviour 131 (1994), pp. 225–259.
  • A. Gong, F.W. Freking, J. Wingfield, B.A. Schlinger, and A.P. Arnold, Effects of embryonic treatment with fadrozole on phenotype of gonads, syrinx, and neural song system in zebra finches, Gen. Comp. Endocrinol. 115 (1999), pp. 346–353.
  • K.K. Soma, K. Sullivan, and J. Wingfield, Combined aromatase inhibitor and antiandrogen treatment decreases territorial aggression in a wild songbird during the nonbreeding season, Gen. Comp. Endocrinol. 115 (1999), pp. 442–453.
  • M. Taziaux, C.A. Cornil, and J. Balthazart, Aromatase inhibition blocks the expression of sexually-motivated cloacal gland movements in male quail, Behav. Proc. 67 (2004), pp. 461–469.
  • X.R. Yang, H.S. Jiang, J.X. Zheng, L.J. Qu, S.R. Chen, J.Y. Li, G.Y. Xu, and N. Yang, Dosage effects of fadrozole on growth and development of sex-reversed genetic female chickens, J. Integr. Agri. 12 (2013), pp. 1049–1053.
  • D. Ghosh, J. Griswold, M. Erman, and W. Pangborn, Structural basis for androgen specificity and oestrogen synthesis in human aromatase, Nature 457 (2009), pp. 219–23.
  • A. Sali and T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol. 234 (1993), pp. 779–815.
  • A.K. Gupta, S.S. Bhunia, V.M. Balaramnavar, and A.K. Saxena, Pharmacophore modelling, molecular docking and virtual screening for EGFR (HER 1) tyrosine kinase inhibitors, SAR QSAR Environ. Res. 22 (2011), pp. 239–263.
  • M. Saxena, S.S. Bhunia, and A.K. Saxena, Docking studies of novel pyrazinopyrido indoles class of antihistamines with the homology modelled H1-receptor, SAR QSAR Environ. Res. 23 (2012), pp. 311–325.
  • Glide, version 5.0; Schrӧdinger, LLC: New York, 2008.
  • MacroModel, version 9.8; Schrӧdinger, LLC: New York, 2009.
  • N. Strushkevich and S.A. Usanov, Structural basis of human CYP51 inhibition by antifungal azoles, J. Mol. Biol. 4 (2010), pp. 1067–1078.
  • K. Shahrokh, A. Orendt, G. Yost, and T. Cheatham, Quantum mechanically derived AMBER-compatible heme parameters for various states of the cytochrome P450 catalytic cycle, J. Comput. Chem. 33 (2012), pp. 119–133.
  • M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, and J.A. Montgomery, General atomic and molecular electronic structure system, J. Comput. Chem. 14 (1993), pp. 1347–1363.
  • M.S. Gordon and M.W. Schmidt, Advances in electronic structure theory: GAMESS a decade later, in Theory and Applications of Computational Chemistry: The First Forty Years, C.E. Dykstra, G. Frenking, K.S. Kim, and G.E. Scuseria, eds., Elsevier, Amsterdam, 2005, pp. 1167–1189.
  • C.I. Bayly, P. Cieplak, W. Cornell, and P.A. Kollman, A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model, J. Phys. Chem. 97 (1993), pp. 10269–10280.
  • D. Case, T. Darden, T.E. Cheatham III, C. Simmerling, J. Wang, R. Duke, R. Luo, R. Walker, W. Zhang, and K. Merz, AMBER 11, University of California, San Francisco, 2010, p. 142.
  • D.A. Case, T.E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr, A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005), pp. 1668–1688.
  • D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham III, S. DeBolt, D. Ferguson, G. Seibel, and P. Kollman, AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules, Comput. Phys. Commun. 91 (1995), pp. 1–41.
  • J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, and K. Schulten, Scalable molecular dynamics with NAMD, J. Comput. Chem. 26 (2005), pp. 1781–1802.
  • J.P. Ryckaert, G. Ciccotti, and J.H. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977), pp. 327–341.
  • W. Humphrey, A. Dalke, and K. Schulten, VMD – Visual molecular dynamics, J. Mol. Graphics 14 (1996), pp. 33–38.
  • G.T. Ankley, M.D. Kahl, K.M. Jensen, M.W. Hornung, J.K. Korte, E.A. Makynen, and R.L. Leino, Evaluation of the aromatase inhibitor fadrozole in a short-term reproduction assay with the fathead minnow (Pimephales promelas), Toxicol. Sci. 67 (2002), pp. 121–130.
  • J. Zhao, P. Mak, A. Tchoudakova, G. Callard, and S. Chen, Different catalytic properties and inhibitor responses of the goldfish brain and ovary aromatase isozymes, Gen. Comp. Endocrinol. 123 (2001), pp. 180–191.
  • K. Cheshenko, F. Pakdel, H. Segner, O. Kah, and R.I.L. Eggen, Interference of endocrine disrupting chemicals with aromatase CYP19 expression or activity, and consequences for reproduction of teleost fish, Gen. Comp. Endocrinol. 155 (2008), pp. 31–62.
  • J.T. Sanderson, J. Boerma, G.W.A. Lansbergen, and M. van den Berg, Induction and inhibition of aromatase (CYP19) activity by various classes of pesticides in H295R human adrenocortical carcinoma cells, Toxicol. Appl. Pharmacol. 182 (2002), pp. 44–54.
  • L. Malloch and A. Rhoton-Vlasak, An assessment of current clinical attitudes toward letrozole use in reproductive endocrinology practices, Fert. Steril. 100 (2013), pp. 1740–1744.
  • T.L. Jones-Lepp, R.L. Taniguchi-Fu, J. Morgan, T. Nance, M. Ward, D.A. Alvarez, and L. Mills, Developing analytical approaches to explore the connection between endocrine-active pharmaceuticals in water to effects in fish, Anal. Bioanal. Chem. 407 (2015), pp. 6481–6492.
  • L. Sun, J. Zha, P.A. Spear, and Z. Wang, Toxicity of the aromatase inhibitor letrozole to Japanese medaka (Oryzias latipes) eggs, larvae and breeding adults, Comp. Biochem. Physiol. Part C 145 (2007), pp. 533–541.
  • P.H. Liao, S.H. Chu, T.Y. Tu, X.H. Wang, A. Yu-Chen Lin, and P.J. Chen, Persistent endocrine disruption effects in medaka fish with early life-stage exposure to a triazole-containing aromatase inhibitor (letrozole), J. Hazard. Mat. 277 (2014), pp. 141–149.
  • B. Belaid, N. Richard-Mercier, C. Pieau, and M. Dorizzi, Sex reversal and aromatase in the European pond turtle: Treatment with letrozole after the thermosensitive period for sex determination, J. Exp. Zool. 290 (2001), pp. 490–497.
  • A.V. Trukhina, N.A. Lukina, N.D. Wackerov-Kouzova, A.A. Nekrasova, and A.F. Smirnov, Sex inversion in domestic chicken (Gallus gallus domesticus) by letrozole and tamoxifen, Cell Tissue Biol. 8 (2014), pp. 244–252.
  • Y.F. Deng, X.X. Chen, Z.L. Zhou, and J.F. Hou, Letrozole inhibits the osteogenesis of medullary bone in prelay pullets, Poultry Sci. 89 (2010), pp. 917–923.
  • B. Apfelbeck, S. Kiefer, K.G. Mortega, W. Goymann, and S. Kipper, Testosterone affects song modulation during simulated territorial intrusions in male black redstarts (Phoenicurus ochruros), PLoS ONE 7 (2012), p. e52009.
  • B. Apfelbeck, K.G. Mortega, S. Kiefer, S. Kipper, and W. Goymann, Life-history and hormonal control of aggression in black redstarts: Blocking testosterone does not decrease territorial aggression, but changes the emphasis of vocal behaviours during simulated territorial intrusions, Front. Zool. 10 (2013), p. 15.
  • W.H. Burke and M.H. Henry, Gonadal development and growth of chickens and turkeys hatched from eggs injected with an aromatase inhibitor, Poultry Sci. 78 (1999), pp. 1019–1033.
  • H. Wartenberg, E. Lenz, and H.U. Schweikert, Sexual differentiation and the germ cell in sex-reversed gonads after aromatase inhibition in the chicken embryo, Andrologia 24 (1992), pp. 1–6.
  • K.K. Soma, A.D. Tramontin, and J.C. Wingfield, Oestrogen regulates male aggression in the non-breeding season, Proc. R. Soc. Lond. Ser. B 267 (2000), pp. 1089–1096.
  • K.K. Soma, K.A. Sullivan, A.D. Tramontin, C.J. Saldanha, B.A. Schlinger, and J.C. Wingfield, Acute and chronic effects of an aromatase inhibitor on territorial aggression in breeding and nonbreeding male song sparrows, J. Comp. Physiol. 186 (2000), pp. 759–769.
  • Public Anonymous, Release Summary on the Evaluation of the New Active Ipconazole in the Product Rancona C Seed Treatment, APVMA Product Number 63309, Australian Pesticides and Veterinary Medicines Authority, Australian Government, 2010.
  • EPA, Fenarimol Summary Document: Registration Review, EPA-HQ-OPP-2006-0241, March 2007.
  • M. Bolčič-Tavčar and M. Vračko, Assessing the reproductive toxicity of some (con)azole compounds using a structure–activity relationship approach, SAR QSAR Environ. Res. 20 (2009), pp. 711–725.
  • M. Bolčič-Tavčar and M. Vračko, Prediction of mutagenicity, carcinogenicity, developmental toxicity, and skin sensitisation with CAESAR program for a set of conazoles, Arh. Hig. Rada Toksikol. 63 (2012), pp. 283–292.
  • K. Kongsbak, A.M. Vinggaard, N. Hadrup, and K. Audouze, A computational approach to mechanistic and predictive toxicology of pesticides, Altex 31 (2014), pp. 11–22.