177
Views
24
CrossRef citations to date
0
Altmetric
Articles

QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents

, , , , , , , & show all
Pages 943-958 | Received 08 May 2015, Accepted 17 Aug 2015, Published online: 16 Nov 2015

References

  • H.M. Blumberg, W.R. Jarvis, J.M. Soucie, J.E. Edwards, J.E. Patterson, M.A. Pfaller, M.S. Rangel-Frausto, M.G. Rinaldi, L. Saiman, R.T. Wiblin, and R.P. Wenzel, Risk factors for candidal bloodstream infections in surgical intensive care unit patients: The NEMIS prospective multicenter study. The National Epidemiology of Mycosis Survey, Clin. Infect. Dis. 33 (2001), pp. 177–186.
  • G. Maschmeyer, The changing epidemiology of invasive fungal infections: New threats, Int. J. Antimicrob. Agents 27(Suppl. 1) (2006), pp. 3–6.
  • M. Nucci and K.A. Marr, Emerging fungal diseases, Clin. Infect. Dis. 41 (2005), pp. 521–526.
  • J.R. Rees, R.W. Pinner, R.A. Hajjeh, M.E. Brandt, and A.L. Reingold, The epidemiological features of invasive mycotic infections in the San Francisco Bay area, 1992–1993: Results of population-based laboratory active surveillance, Clin. Infect. Dis. 27 (1998), pp. 1138–1147.
  • T.J. Walsh, A. Groll, J. Hiemenz, R. Fleming, E. Roilides, and E. Anaissie, Infections due to emerging and uncommon medically important fungal pathogens, Clin. Microbiol. Infect. 10(Suppl 1) (2004), pp. 48–66.
  • D.A. Dickman, H. Ding, Q. Li, A.M. Nilius, D.J. Balli, S.J. Ballaron, J.M. Trevillyan, M.L. Smith, L.S. Seif, K. Kim, A. Sarthy, R.C. Goldman, J.J. Plattner, and Y.L. Bennani, Antifungal rapamycin analogues with reduced immunosuppressive activity, Bioorg. Med. Chem. Lett. 10 (2000), pp. 1405–1408.
  • R. Gozalbes, J. Galvez, A. Moreno, and R. Garcia-Domenech, Discovery of new antimalarial compounds by use of molecular connectivity techniques, J. Pharm. Pharmacol. 51 (1999), pp. 111–117.
  • Y. Marrero-Ponce, A. Montero-Torres, C.R. Zaldivar, M.I. Veitia, M.M. Perez, and R.N. Sanchez, Non-stochastic and stochastic linear indices of the 'molecular pseudograph's atom adjacency matrix': Application to 'in silico' studies for the rational discovery of new antimalarial compounds, Bioorg. Med. Chem. 13 (2005), pp. 1293–1304.
  • Y. Marrero-Ponce, M. Iyarreta-Veitia, A. Montero-Torres, C. Romero-Zaldivar, C.A. Brandt, P.E. Avila, K. Kirchgatter, and Y. Machado, Ligand-based virtual screening and in silico design of new antimalarial compounds using nonstochastic and stochastic total and atom-type quadratic maps, J. Chem. Inf. Model. 45 (2005), pp. 1082–1100.
  • J.H. McKie, K.T. Douglas, C. Chan, S.A. Roser, R. Yates, M. Read, J.E. Hyde, M.J. Dascombe, Y. Yuthavong, and W. Sirawaraporn, Rational drug design approach for overcoming drug resistance: Application to pyrimethamine resistance in malaria, J. Med. Chem. 41 (1998), pp. 1367–1370.
  • E. Estrada, A. Pena, and R. Garcia-Domenech, Designing sedative/hypnotic compounds from a novel substructural graph-theoretical approach, J. Comput. Aided Mol. Des. 12 (1998), pp. 583–595.
  • E. Estrada, E. Uriarte, A. Montero, M. Teijeira, L. Santana, and E. De Clercq, A novel approach for the virtual screening and rational design of anticancer compounds, J. Med. Chem. 43 (2000), pp. 1975–1985.
  • H. Gonzalez-Diaz, E. Tenorio, N. Castanedo, L. Santana, and E. Uriarte, 3D QSAR Markov model for drug-induced eosinophilia – –theoretical prediction and preliminary experimental assay of the antimicrobial drug G1, Bioorg. Med. Chem. 13 (2005), pp. 1523–1530.
  • P.D. Lyne, Structure-based virtual screening: An overview, Drug. Discov. Today 7 (2002), pp. 1047–1055.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009.
  • M.H.J. Seifert, K. Wolf, and D. Vitt, Virtual high-throughput in silico screening, Biosilico (2003), pp. 143–149.
  • S.J. Barigye, Y. Marrero-Ponce, F. Pérez-Giménez, and D. Bonchev, Trends in information theory-based chemical structure codification, Mol. Divers. 19 (2014), pp. 305–319.
  • S.J. Barigye and M.P. Freitas, 2D-Discrete Fourier transform: Generalization of the MIA-QSAR strategy in molecular modeling, Chemom. Intell. Lab. Syst. 143 (2015), pp. 79–84.
  • S. Barigye, Y. Marrero-Ponce, Y.M. López, O.M. Santiago, F. Torrens, R.G. Domenech, and J. Galvez, Event-based criteria in GT-STAF information indices: Theory, exploratory diversity analysis and QSPR applications, SAR QSAR Environ Res. 24 (2013), pp. 3–34.
  • S.J. Barigye and M.P. Freitas, Is molecular alignment an indispensable requirement in the MIA-QSAR method?, J. Comput. Chem. 36 (2015), pp. 1748–1755.
  • R. Gollapudy, S. Ajmani, and S.A. Kulkarni, Modeling and interactions of Aspergillus fumigatus lanosterol 14-alpha demethylase 'A' with azole antifungals, Bioorg. Med. Chem. 12 (2004), pp. 2937–2950.
  • V.M. Gokhale and V.M. Kulkarni, Understanding the antifungal activity of terbinafine analogues using quantitative structure–activity relationship (QSAR) models, Bioorg. Med. Chem. 8 (2000), pp. 2487–2499.
  • P. Purushottamachar and V.M. Kulkarni, 3D-QSAR of N-myristoyltransferase inhibiting antifungal agents by CoMFA and CoMSIA methods, Bioorg. Med. Chem. 11 (2003), pp. 3487–3497.
  • S.K. Pranav, Kumar and V.M. Kulkarni, Insights into the selective inhibition of Candida albicans secreted aspartyl protease: A docking analysis study, Bioorg. Med. Chem. 10 (2002), pp. 1153–1170.
  • F. Fratev and E. Benfenati, 3D-QSAR and molecular mechanics study for the differences in the azole activity against yeastlike and filamentous fungi and their relation to P450DM inhibition. 1. 3-Substituted-4(3H)-quinazolinones, J. Chem. Inf. Model. 45 (2005), pp. 634–644.
  • H. Gonzalez-Diaz, F.J. Prado-Prado, L. Santana, and E. Uriarte, Unify QSAR approach to antimicrobials. Part 1: Predicting antifungal activity against different species, Bioorg. Med. Chem. 14 (2006), pp. 5973–5980.
  • L. Pastor, R. Garcia-Domenech, J. Galvez, S. Wolski, and M.D. Garcia, New antifungals selected by molecular topology, Bioorg. Med. Chem. Lett. 8 (1998), pp. 2577–2582.
  • R. García-Domenech, A. Catalá-Gregori, C. Calabuig, G. Antón-Fos, L. del Castillo, and J. Gálvez, Predicting antifungal activity: A computational screening using topological descriptors, Internet Electron. J. Mol. Des. 7 (2002), pp. 339–350.
  • S.-W. Chen, Z.-R. Li, and X.-Y. Li, Prediction of antifungal activity by support vector machine approach, J. Mol. Struct. (THEOCHEM) 731 (2005), pp. 73–81.
  • Y. Marrero-Ponce, Total and local quadratic indices of the molecular pseudograph′s atom adjacency matrix: Applications to the prediction of physical properties of organic compounds, Molecules 8 (2003), pp. 687–726.
  • Y. Marrero-Ponce, Linear indices of the ‘molecular pseudograph's atom adjacency matrix’: Definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 2010–2026.
  • Y. Marrero-Ponce, A. Meneses-Marcel, J.A. Castillo-Garit, Y. Machado-Tugores, J.A. Escario, A.G. Barrio, D.M. Pereira, J.J. Nogal-Ruiz, V.J. Aran, A.R. Martinez-Fernandez, F. Torrens, R. Rotondo, F. Ibarra-Velarde, and Y.J. Alvarado, Predicting antitrichomonal activity: A computational screening using atom-based bilinear indices and experimental proofs, Bioorg. Med. Chem. 14 (2006), pp. 6502–6524.
  • C.R. García-Jacas, Y. Marrero-Ponce, L. Acevedo-Martínez, S.J. Barigye, J.R. Valdés-Martiní, and E. Contreras-Torres, QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation based on multilinear algebraic maps, J. Comp. Chem. 35 (2014), pp. 1395–1409.
  • C.R. Garcia-Jacas, Y. Marrero-Ponce, S.J. Barigye, J.R. Valdes-Martini, O.M. Rivera-Borroto, and J. Olivero-Verbel, N-linear algebraic maps for chemical structure codification: A suitable generalization for atom-pair approaches?, Curr. Drug Metab. 15 (2014), pp. 441–469.
  • C.R. García-Jacas, L. Aguilera-Mendoza, R. González-Pérez, Y. Marrero-Ponce, L. Acevedo-Martínez, S.J. Barigye, and T. Avdeenko, Multi-server approach for high-throughput molecular descriptors calculation based on multi-linear algebraic maps, Mol. Info. 34 (2015), pp. 60–69.
  • G.M. Casanola-Martin, M.T. Khan, Y. Marrero-Ponce, A. Ather, M.N. Sultankhodzhaev, and F. Torrens, New tyrosinase inhibitors selected by atomic linear indices-based classification models, Bioorg. Med. Chem. Lett. 16 (2006), pp. 324–330.
  • Y. Marrero-Ponce, J.A. Castillo-Garit, E. Olazabal, H.S. Serrano, A. Morales, N. Castanedo, F. Ibarra-Velarde, A. Huesca-Guillen, E. Jorge, A. del Valle, F. Torrens, and E.A. Castro, TOMOCOMD-CARDD, a novel approach for computer-aided 'rational' drug design: I. Theoretical and experimental assessment of a promising method for computational screening and in silico design of new anthelmintic compounds, J. Comput. Aided Mol. Des. 18 (2004), pp. 615–634.
  • Y. Marrero-Ponce, J.A. Castillo-Garit, E. Olazabal, H.S. Serrano, A. Morales, N. Castanedo, F. Ibarra-Velarde, A. Huesca-Guillen, A.M. Sanchez, F. Torrens, and E.A. Castro, Atom, atom-type and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: Theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic, Bioorg. Med. Chem. 13 (2005), pp. 1005–1020.
  • Y. Marrero-Ponce, Y. Machado-Tugores, D.M. Pereira, J.A. Escario, A.G. Barrio, J.J. Nogal-Ruiz, C. Ochoa, V.J. Aran, A.R. Martinez-Fernandez, R.N. Sanchez, A. Montero-Torres, F. Torrens, and A. Meneses-Marcel, A computer-based approach to the rational discovery of new trichomonacidal drugs by atom-type linear indices, Curr. Drug Discov. Technol. 2 (2005), pp. 245–265.
  • Y. Marrero-Ponce, R.M. Marrero, F. Torrens, Y. Martinez, M.G. Bernal, V.R. Zaldivar, E.A. Castro, and R.G. Abalo, Non-stochastic and stochastic linear indices of the molecular pseudograph's atom-adjacency matrix: A novel approach for computational in silico screening and ‘rational’ selection of new lead antibacterial agents, J. Mol. Model. (Online) 12 (2006), pp. 255–271.
  • Y. Marrero-Ponce, R. Medina-Marrero, F. Torrens, Y. Martinez, V. Romero-Zaldivar, and E.A. Castro, Atom, atom-type, and total nonstochastic and stochastic quadratic fingerprints: A promising approach for modeling of antibacterial activity, Bioorg. Med. Chem. 13 (2005), pp. 2881–2899.
  • M.C. Vega, A. Montero-Torres, Y. Marrero-Ponce, M. Rolon, A. Gomez-Barrio, J.A. Escario, V.J. Aran, J.J. Nogal, A. Meneses-Marcel, and F. Torrens, New ligand-based approach for the discovery of antitrypanosomal compounds, Bioorg. Med. Chem. Lett. 16 (2006), pp. 1898–1904.
  • M.A.M. Alho, Y. Marrero-Ponce, S.J. Barigye, A. Meneses-Marcel, Y.M. Tugores, A. Montero-Torres, A. Gómez-Barrio, J.J. Nogal, R.N. García-Sánchez, and M.C. Vega, Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones, Bioorg. Med. Chem. 22 (2014), pp. 1568–1585.
  • J.A. Castillo-Garit, Y. Marrero-Ponce, S.J. Barigye, R. Medina-Marrero, M.G. Bernal, J.M. de la Vega, F. Torrens, V.J. Arán, F. Pérez-Giménez, and R. García-Domenechd, In silico antibacterial activity modeling based on the TOMOCOMD-CARDD approach, J. Braz. Chem. Soc. 26 (2015), pp. 1218–1226.
  • P.M. Bedi, M.P. Mahajan, and V.K. Kapoor, Amidine derived 1,3-diazabuta-1,3-dienes as potential antibacterial and antifungal agents, Bioorg. Med. Chem. Lett. 14 (2004), pp. 3821–3824.
  • T.G. Brayman and J.W. Wilks, Sensitive assay for antifungal activity of glucan synthase inhibitors that uses germ tube formation in Candida albicans as an end point, Antimicrob. Agents Chemother. 47 (2003), pp. 3305–3310.
  • A. Bryskier, Novelties in the field of anti-infective compounds in 1999, Clin. Infect. Dis. 31 (2000), pp. 1423–1466.
  • V. Buchta, M. Pour, P. Kubanova, L. Silva, I. Votruba, M. Voprsalova, R. Schiller, H. Fakova, and M. Spulak, In vitro activities of 3-(halogenated phenyl)-5-acyloxymethyl- 2,5-dihydrofuran-2-ones against common and emerging yeasts and molds, Antimicrob. Agents Chemother. 48 (2004), pp. 873–878.
  • J.M. Bueno, J.C. Cuevas, J.M. Fiandor, S. Garcia-Ochoa, and F. Gomez de las Heras, Antifungal sordarins. Synthesis and structure-activity relationships of 3',4'-fused dioxolane and dioxane derivatives, Bioorg. Med. Chem. Lett. 12 (2002), pp. 121–124.
  • A. Carta, G. Paglietti, and M.E. Rahbar Nikookar, P. Sanna, L. Sechi, and S. Zanetti, Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity, Eur. J. Med. Chem. 37 (2002), pp. 355–366.
  • K.V. Clemons and D.A. Stevens, Efficacies of two novel azole derivatives each containing a morpholine ring, UR-9746 and UR-9751, against systemic murine coccidioidomycosis, Antimicrob. Agents Chemother. 41 (1997), pp. 200–203.
  • M. Debono and R.S. Gordee, Antibiotics that inhibit fungal cell wall development, Annu. Rev. Microbiol. 48 (1994), pp. 471–497.
  • M. Del Poeta, W.A. Schell, C.C. Dykstra, S. Jones, R.R. Tidwell, A. Czarny, M. Bajic, A. Kumar, D. Boykin, and J.R. Perfect, Structure-in vitro activity relationships of pentamidine analogues and dication-substituted bis-benzimidazoles as new antifungal agents, Antimicrob. Agents Chemother. 42 (1998), pp. 2495–2502.
  • M. Del Poeta, W.A. Schell, C.C. Dykstra, S.K. Jones, R.R. Tidwell, A. Kumar, D.W. Boykin, and J.R. Perfect, In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles, Antimicrob. Agents Chemother. 42 (1998), pp. 2503–2510.
  • D.W. Denning, Echinocandins and pneumocandins – –A new antifungal class with a novel mode of action, J. Antimicrob. Chemother. 40 (1997), pp. 611–614.
  • J.M. Dominguez, V.A. Kelly, O.S. Kinsman, and M.S. Marriott, F. Gomez de las Heras, and J.J. Martin, Sordarins: A new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts, Antimicrob. Agents Chemother. 42 (1998), pp. 2274–2278.
  • H. Ebiike, M. Masubuchi, P. Liu, K. Kawasaki, K. Morikami, S. Sogabe, M. Hayase, T. Fujii, K. Sakata, H. Shindoh, Y. Shiratori, Y. Aoki, T. Ohtsuka, and N. Shimma, Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 2, Bioorg. Med. Chem. Lett. 12 (2002), pp. 607–610.
  • S. Emami, M. Falahati, A. Banifatemi, and A. Shafiee, Stereoselective synthesis and antifungal activity of (Z)-trans-3-azolyl-2-methylchromanone oxime ethers, Bioorg. Med. Chem. 12 (2004), pp. 5881–5889.
  • B. Favre and N.S. Ryder, Characterization of squalene epoxidase activity from the dermatophyte Trichophyton rubrum and its inhibition by terbinafine and other antimycotic agents, Antimicrob. Agents Chemother. 40 (1996), pp. 443–447.
  • J.M. Fostel and P.A. Lartey, Emerging novel antifungal agents, Drug. Discov. Today 5 (2000), pp. 25–32.
  • H. Goker, D.W. Boykin, and S. Yildiz, Synthesis and potent antimicrobial activity of some novel 2-phenyl or methyl-4H-1-benzopyran-4-ones carrying amidinobenzimidazoles, Bioorg. Med. Chem. 13 (2005), pp. 1707–1714.
  • V.M. Gokhale and V.M. Kulkarni, Selectivity analysis of 5-(arylthio)-2,4-diaminoquinazolines as inhibitors of Candida albicans dihydrofolate reductase by molecular dynamics simulations, J. Comput. Aided Mol. Des. 14 (2000), pp. 495–506.
  • K. Hata, J. Kimura, H. Miki, T. Toyosawa, M. Moriyama, and K. Katsu, Efficacy of ER-30346, a novel oral triazole antifungal agent, in experimental models of aspergillosis, candidiasis, and cryptococcosis, Antimicrob. Agents Chemother. 40 (1996), pp. 2243–2247.
  • E. Herreros, M.J. Almela, S. Lozano, F. Gomez de las Heras, and D. Gargallo-Viola, Antifungal activities and cytotoxicity studies of six new azasordarins, Antimicrob. Agents Chemother. 45 (2001), pp. 3132–3139.
  • E. Herreros, C.M. Martinez, M.J. Almela, M.S. Marriott, F.G. De Las Heras, and D. Gargallo-Viola, Sordarins: In vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi, Antimicrob. Agents Chemother. 42 (1998), pp. 2863–2869.
  • Y. Kamai, T. Harasaki, T. Fukuoka, S. Ohya, K. Uchida, H. Yamaguchi, and S. Kuwahara, In vitro and in vivo activities of CS-758 (R-120758), a new triazole antifungal agent, Antimicrob. Agents Chemother. 46 (2002), pp. 367–370.
  • J.K. Khan, H. Montaseri, M. Poglod, H.Z. Bu, Z. Zuo, S.M. Salama, M. Daneshtalab, and R.G. Micetich, Interspecies comparison of pharmacokinetics of the novel triazole antifungal agent SYN-2869 and its derivatives, Antimicrob. Agents Chemother. 44 (2000), pp. 910–915.
  • I. Kubo, P. Xiao, and K. Fujita, Antifungal activity of octyl gallate: Structural criteria and mode of action, Bioorg. Med. Chem. Lett. 11 (2001), pp. 347–350.
  • B. Lal, V.G. Gund, N.B. Bhise, and A.K. Gangopadhyay, Mannich reaction: An approach for the synthesis of water soluble mulundocandin analogues, Bioorg. Med. Chem. 12 (2004), pp. 1751–1768.
  • B. Lal, V.G. Gund, A.K. Gangopadhyay, S.R. Nadkarni, V. Dikshit, D.K. Chatterjee, and R. Shirvaikar, Semisynthetic modifications of hemiaminal function at ornithine unit of mulundocandin, towards chemical stability and antifungal activity, Bioorg. Med. Chem. 11 (2003), pp. 5189–5198.
  • S. Li, Z. Zhang, A. Cain, B. Wang, M. Long, and J. Taylor, Antifungal activity of camptothecin, trifolin, and hyperoside isolated from Camptotheca acuminata, J. Agric. Food Chem. 53 (2005), pp. 32–37.
  • S.N. Lopez, M.V. Castelli, S.A. Zacchino, J.N. Dominguez, G. Lobo, J. Charris-Charris, J.C. Cortes, J.C. Ribas, C. Devia, A.M. Rodriguez, and R.D. Enriz, In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall, Bioorg Med Chem 9 (2001), pp. 1999–2013.
  • S.M. Mandala, R.A. Thornton, J. Milligan, M. Rosenbach, M. Garcia-Calvo, H.G. Bull, G. Harris, G.K. Abruzzo, A.M. Flattery, C.J. Gill, K. Bartizal, S. Dreikorn, and M.B. Kurtz, Rustmicin, a potent antifungal agent, inhibits sphingolipid synthesis at inositol phosphoceramide synthase, J. Biol. Chem. 273 (1998), pp. 14942–14949.
  • S.M. Mandala, R.A. Thornton, M. Rosenbach, J. Milligan, M. Garcia-Calvo, H.G. Bull, and M.B. Kurtz, Khafrefungin, a novel inhibitor of sphingolipid synthesis, J. Biol. Chem. 272 (1997), pp. 32709–32714.
  • K. Masubuchi, T. Okada, M. Kohchi, T. Murata, M. Tsukazaki, O. Kondoh, T. Yamazaki, Y. Satoh, Y. Ono, T. Tsukaguchi, K. Kobayashi, N. Ono, T. Inoue, I. Horii, and N. Shimma, Synthesis and antifungal activities of novel 1,3-beta-d-glucan synthase inhibitors. Part 2, Bioorg. Med. Chem. Lett. 11 (2001), pp. 1273–1276.
  • M. Masubuchi, H. Ebiike, K. Kawasaki, S. Sogabe, K. Morikami, Y. Shiratori, S. Tsujii, T. Fujii, K. Sakata, M. Hayase, H. Shindoh, Y. Aoki, T. Ohtsuka, and N. Shimma, Synthesis and biological activities of benzofuran antifungal agents targeting fungal N-myristoyltransferase, Bioorg. Med. Chem. 11 (2003), pp. 4463–4478.
  • M. Masubuchi, K. Kawasaki, H. Ebiike, Y. Ikeda, S. Tsujii, S. Sogabe, T. Fujii, K. Sakata, Y. Shiratori, Y. Aoki, T. Ohtsuka, and N. Shimma, Design and synthesis of novel benzofurans as a new class of antifungal agents targeting fungal N-myristoyltransferase. Part 1, Bioorg. Med. Chem. Lett. 11 (2001), pp. 1833–1837.
  • M. Matsumoto, K. Ishida, A. Konagai, K. Maebashi, and T. Asaoka, Strong antifungal activity of SS750, a new triazole derivative, is based on its selective binding affinity to cytochrome P450 of fungi, Antimicrob. Agents Chemother. 46 (2002), pp. 308–314.
  • G. Menozzi, L. Merello, P. Fossa, S. Schenone, A. Ranise, L. Mosti, F. Bondavalli, R. Loddo, C. Murgioni, V. Mascia, P. La Colla, and E. Tamburini, Synthesis, antimicrobial activity and molecular modeling studies of halogenated 4-[1H-imidazol-1-yl(phenyl)methyl]-1,5-diphenyl-1H-pyrazoles, Bioorg. Med. Chem. 12 (2004), pp. 5465–5483.
  • S. Moreau, M. Varache-Lembege, S. Larrouture, D. Fall, A. Neveu, G. Deffieux, J. Vercauteren, and A. Nuhrich, (2-Arylhydrazonomethyl)-substituted xanthones as antimycotics: Synthesis and fungistatic activity against Candida species, Eur. J. Med. Chem. 37 (2002), pp. 237–253.
  • N.H. Nam, S. Sardari, M. Selecky, and K. Parang, Carboxylic acid and phosphate ester derivatives of fluconazole: Synthesis and antifungal activities, Bioorg. Med. Chem. 12 (2004), pp. 6255–6269.
  • K. Nimura, Y. Niwano, S. Ishiduka, and R. Fukumoto, Comparison of in vitro antifungal activities of topical antimycotics launched in 1990s in Japan, Int. J. Antimicrob. Agents 18 (2001), pp. 173–178.
  • Y. Niwano, N. Kuzuhara, Y. Goto, Y. Munechika, H. Kodama, K. Kanai, M. Yoshida, T. Miyazaki, and H. Yamaguchi, Efficacy of NND-502, a novel imidazole antimycotic agent, in experimental models of Candida albicans and Aspergillus fumigatus infections, Int. J. Antimicrob. Agents 12 (1999), pp. 221–228.
  • P. Panneerselvam, R.R. Nair, G. Vijayalakshmi, E.H. Subramanian, and S.K. Sridhar, Synthesis of Schiff bases of 4-(4-aminophenyl)-morpholine as potential antimicrobial agents, Eur. J. Med. Chem. 40 (2005), pp. 225–229.
  • C.A. Quesnelle, P. Gill, M. Dodier, and D. St Laurent, M. Serrano-Wu, A. Marinier, A. Martel, C.E. Mazzucco, T.M. Stickle, J.F. Barrett, D.M. Vyas, and B.N. Balasubramanian, Sordaricin antifungal agents, Bioorg. Med. Chem. Lett. 13 (2003), pp. 519–524.
  • C.K. Ryu, H.Y. Kang, Y.J. Yi, K.H. Shin, and B.H. Lee, Synthesis and antifungal activities of 5/6-arylamino-4,7-dioxobenzothiazoles, Bioorg. Med. Chem. Lett. 10 (2000), pp. 1589–1591.
  • D.J. Sheehan, C.A. Hitchcock, and C.M. Sibley, Current and emerging azole antifungal agents, Clin. Microbiol. Rev. 12 (1999), pp. 40–79.
  • C.E. Stephens, F. Tanious, S. Kim, W.D. Wilson, W.A. Schell, J.R. Perfect, S.G. Franzblau, and D.W. Boykin, Diguanidino and ‘reversed’ diamidino 2,5-diarylfurans as antimicrobial agents, J. Med. Chem. 44 (2001), pp. 1741–1748.
  • J.S. Tkacz and B. DiDomenico, Antifungals: What's in the pipeline, Curr. Opin. Microbiol. 4 (2001), pp. 540–545.
  • N. Tsuchimori, R. Hayashi, N. Kitamoto, K. Asai, T. Kitazaki, Y. Iizawa, K. Itoh, and K. Okonogi, In vitro and in vivo antifungal activities of TAK-456, a novel oral triazole with a broad antifungal spectrum, Antimicrob. Agents Chemother. 46 (2002), pp. 1388–1393.
  • J.M. Urbina, J.C. Cortes, A. Palma, S.N. Lopez, S.A. Zacchino, R.D. Enriz, J.C. Ribas, and V.V. Kouznetzov, Inhibitors of the fungal cell wall. Synthesis of 4-aryl-4-N-arylamine-1-butenes and related compounds with inhibitory activities on beta(1–3) glucan and chitin synthases, Bioorg. Med. Chem. 8 (2000), pp. 691–698.
  • M.L. Vargas, M.V. Castelli, V.V. Kouznetsov, G.J. Urbina, S.N. Lopez, M. Sortino, R.D. Enriz, J.C. Ribas, and S. Zacchino, In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers, Bioorg. Med. Chem. 11 (2003), pp. 1531–1550.
  • I. Yalcin, I. Oren, O. Temiz, and E.A. Sener, QSARs of some novel isosteric heterocyclics with antifungal activity, Acta Biochim. Pol. 47 (2000), pp. 481–486.
  • A. Yotsuji, K. Shimizu, H. Araki, K. Fujimaki, N. Nishida, R. Hori, N. Annen, S. Yamamoto, H. Hayakawa, H. Imaizumi, Y. Watanbe, and H. Narita, T-8581, a new orally and parenterally active triazole antifungal agent: In vitro and in vivo evaluations, Antimicrob. Agents Chemother. 41 (1997), pp. 30–34.
  • Y.Z. Zhang, X. Sun, D.J. Zeckner, R.K. Sachs, W.L. Current, and S.H. Chen, 8-Amido-Bearing pseudomycin B (PSB) analogue: Novel antifungal agents, Bioorg. Med. Chem. Lett. 11 (2001), pp. 123–126.
  • S.Y. Ablordeppey, P. Fan, S. Li, A.M. Clark, and C.D. Hufford, Substituted indoloquinolines as new antifungal agents, Bioorg. Med. Chem. 10 (2002), pp. 1337–1346.
  • A.K. Saha, L. Liu, R.L. Simoneaux, M.J. Kukla, P. Marichal, and F. Odds, Novel antifungals based on 4-substituted imidazole: a combinatorial chemistry approach to lead discovery and optimization, Bioorg. Med. Chem. Lett. 10 (2000), pp. 2175–2178.
  • D. Barrett, A. Tanaka, K. Harada, H. Ohki, E. Watabe, K. Maki, and F. Ikeda, Synthesis and biological activity of novel macrocyclic antifungals: Acylated conjugates of the ornithine moiety of the lipopeptidolactone FR901469, Bioorg. Med. Chem. Lett. 11 (2001), pp. 479–482.
  • A. Bryskier, Novelties in the field of anti-infectives in 1997, Clin. Infect. Dis. 27(1998), pp. 865–883.
  • A. Martinez, S. Ferrer, I. Santos, E. Jimenez, J. Sparrowe, J. Regadera, F.G. De Las Heras, and D. Gargallo-Viola, Antifungal activities of two new azasordarins, GW471552 and GW471558, in experimental models of oral and vulvovaginal candidiasis in immunosuppressed rats, Antimicrob. Agents Chemother. 45 (2001), pp. 3304–3309.
  • M.H. Serrano-Wu and D.R. St Laurent, C.E. Mazzucco, T.M. Stickle, J.F. Barrett, D.M. Vyas, and B.N. Balasubramanian, Oxime derivatives of sordaricin as potent antifungal agents, Bioorg. Med. Chem. Lett. 12 (2002), pp. 943–946.
  • G. Turan-Zitouni, Z.A. Kaplancikli, M.T. Yildiz, P. Chevallet, and D. Kaya, Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H -1,2,4-triazole derivatives, Eur. J. Med. Chem. 40 (2005), pp. 607–613.
  • Y.M. Na, M. Le Borgne, F. Pagniez, G. Le Baut, and P. Le Pape, Synthesis and antifungal activity of new 1-halogenobenzyl-3-imidazolylmethylindole derivatives, Eur. J. Med. Chem. 38 (2003), pp. 75–87.
  • The Merck Index, Chapman & Hall, New York, 1996.
  • J. Ruiz-Herrera and G. San-Blas, Chitin synthesis as target for antifungal drugs, Curr. Drug Targets Infect. Disord. 3 (2003), pp. 77–91.
  • L. Pauling, The Nature of Chemical Bond, Cornell University Press, Ithaca, NY, 1939.
  • STATISTICA, version. 6.0, Statsoft.
  • P. Baldi, S. Brunak, Y. Chauvin, C.A. Andersen, and H. Nielsen, Assessing the accuracy of prediction algorithms for classification: An overview, Bioinformatics 16 (2000), pp. 412–424.
  • M. Randić, Resolution of ambiguities in structure-property studies by use of orthogonal descriptors, J. Chem. Inf. Comput. Sci. 31 (1991), pp. 311–320.
  • M. Randić, Orthogonal molecular descriptors, New J Chem 15 (1991), pp. 517–525.
  • M. Randić, Correlation of enthalpy of octanes with orthogonal connectivity indices, J. Mol. Struct. (Theochem) 233 (1991), pp. 45–59.
  • E. Estrada and E. Uriarte, Recent advances on the role of topological indices in drug discovery research, Curr. Med. Chem. 8 (2001), pp. 1573–1588.
  • E. Estrada, S. Vilar, E. Uriarte, and Y. Gutierrez, In silico studies toward the discovery of new anti-HIV nucleoside compounds with the use of TOPS-MODE and 2D/3D connectivity indices. 1. Pyrimidyl derivatives, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 1194–1203.
  • S. Wold and L. Erikson, Chemometric methods in molecular design, in Chemometric Methods in Molecular Design, H. van de Waterbeemd, ed., VCH Publishers, Weinheim, 1995, pp. 309–318.
  • A. Golbraikh and A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection, Mol. Divers. 5 (2002), pp. 231–243.
  • J. Loeffler and D.A. Stevens, Antifungal drug resistance, Clin. Infect. Dis. 36 (2003), pp. S31–S41.
  • J.D. Nosanchuk, Current status and future of antifungal therapy for systemic mycoses, Recent Patents Anti-Infective Drug Discov. 1 (2006), pp. 75–84.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.