160
Views
10
CrossRef citations to date
0
Altmetric
Articles

Structure-based design and optimization of antihypertensive peptides to obtain high inhibitory potency against both renin and angiotensin I-converting enzyme

, &
Pages 1001-1016 | Received 05 Jun 2015, Accepted 04 Oct 2015, Published online: 02 Nov 2015

References

  • P.M. Kearney, M. Whelton, K. Reynolds, P. Muntner, P.K. Whelton, and J. He, Global burden of hypertension: Analysis of worldwide data, Lancet 365 (2005), pp. 217–223.
  • J.M. Flack, R. Peters, T. Shafi, H. Alrefai, S.A. Nasser, and E. Crook, Prevention of hypertension and its complications: Theoretical basis and guidelines for treatment, J. Am. Soc. Nephrol. 14 (2003), pp. S92–S98.
  • W.C. Cushman, The burden of uncontrolled hypertension: Morbidity and mortality associated with disease progression, J. Clin. Hypertens. 5 (2003), pp. 14–22.
  • T. Gerhard, J.A. Delaney, R.M. Cooper-Dehoff, J. Shuster, B.A. Brumback, J.A. Johnson, C.J. Pepine, and A.G. Winterstein, Comparing marginal structural models to standard methods for estimating treatment effects of antihypertensive combination therapy, BMC Med. Res. Methodol. 12 (2012), p. 119.
  • S. Reissmann, M.P. Filatova, N.A. Krit, and H. Feist, Peptide inhibitors of the renin-angiotensin system. 2. Polymer-bound tri-, penta- and nonapeptide inhibitors of angiotensin converting enzyme, Pharmazie 47 (1992), pp. 498–501.
  • S.A. Atlas, The renin–angiotensin aldosterone system: Pathophysiological role and pharmacologic inhibition, J. Manag. Care Pharm. 13 (2007), pp. 9–20.
  • P. Vanhee, A.M. van der Sloot, E. Verschueren, L. Serrano, F. Rousseau, and J. Schymkowitz, Computational design of peptide ligands, Trends Biotechnol. 29 (2011), pp. 231–239.
  • H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne, The protein data bank, Nucleic Acids Res. 28 (2000), pp. 235–242.
  • G. Masuyer, S.L. Schwager, E.D. Sturrock, R.E. Isaac, and K.R. Acharya, Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides, Sci. Rep. 2 (2012), p. 717.
  • T. Jing, J. Feng, D. Li, J. Liu, and G. He, Rational design of angiotensin-I-converting enzyme inhibitory peptides by integrating in silico modeling and an in vitro assay, ChemMedChem 8 (2013), pp. 1057–1066.
  • G.G. Krivov, M.V. Shapovalov, and R.L. Dunbrack, Improved prediction of protein side-chain conformations with SCWRL4, Proteins 77 (2009), pp. 778–795.
  • B. Knapp, U. Omasits, and W. Schreiner, Side chain substitution benchmark for peptide/MHC interaction, Protein Sci. 17 (2008), pp. 977–982.
  • Y. Ren, Q. Wang, S. Chen, and H. Cao, Integrating computational modeling and experimental assay to discover new potent ACE-inhibitory peptides, Mol. Inf. 32 (2013), pp. 1–10.
  • S. Hellberg, M. Sjoestroem, B. Skagerberg, and S. Wold, Peptide quantitative structure-activity relationships, a multivariate approach, J. Med. Chem. 30 (1987), pp. 1126–1135.
  • J.H. Wang, Y.L. Liu, J.H. Ning, J. Yu, X.H. Li, and F.X. Wang, Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities, J. Mol. Struct. 2013 (1040), pp. 164–170.
  • S. Wold, M. Sjotrom, and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemom. Intel. Lab. Syst. 58 (2001), pp. 109–130.
  • M. Karplus and J.A. McCammon, Molecular dynamics simulations of biomolecules, Nat. Struct. Biol. 9 (2002), pp. 646–652.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935.
  • Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman, A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, J. Comput. Chem. 24 (2003), pp. 1999–2012.
  • J. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977), pp. 327–341.
  • N. Homeyer and H. Gohlke, Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method, Mol. Inf. 31 (2012), pp. 114–122.
  • D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005), pp. 1668–1688.
  • C.C. Udenigwe, H. Li, and R.E. Aluko, Quantitative structure–activity relationship modeling of renin-inhibiting dipeptides, Amino Acids 42 (2012), pp. 1379–1386.
  • B. Hernandez-Ledesma, L. Amigo, I. Recio, and B. Bartolome, ACE-inhibitory and radical-scavenging activity of peptides derived from beta-lactoglobulin f(19–25). Interactions with ascorbic acid, J. Agric. Food Chem. 55 (2007), pp. 3392–3397.
  • A.C. Wallace, P.A. Laskowski, and J.M. Thornton, LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions, Protein Eng. 8 (1995), pp. 127–134.
  • P. Zhou, J. Huang, and F. Tian, Specific noncovalent interactions at protein–ligand interface: Implications for rational drug design, Curr. Med. Chem. 19 (2012), pp. 226–238.
  • T. Kortemme, D.E. Kim, and D. Baker, Computational alanine scanning of protein–protein interfaces, Sci. STKE 2004 (2004), p. pl2.
  • Z. Zhou, Y. Wang, and S.H. Bryant, QSAR models for predicting cathepsin B inhibition by small molecules – continuous and binary QSAR models to classify cathepsin B inhibition activities of small molecules, J. Mol. Graph. Model. 28 (2010), pp. 714–727.
  • J.S. Kang, S. Kang, D.Y. Ryu, Y.S. Lee, J.K. Lee, T.S. Kang, H.J. Park, and S. Yoon, Comparative study of active and inactive hepatocarcinogens using a QSAR-based prediction model, Mol. Cell. Toxicol. 8 (2012), pp. 383–391.
  • A. Golbraikh and A. Tropsha, Beware of q2, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • R. He, R.E. Aluko, and X.R. Ju, Evaluating molecular mechanism of hypotensive peptides interactions with renin and angiotensin converting enzyme, PLoS ONE 9 (2014), p. e91051.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.