242
Views
5
CrossRef citations to date
0
Altmetric
Articles

A comprehensive QSPR model for dielectric constants of binary solvent mixtures

, , , &
Pages 165-181 | Received 06 Aug 2015, Accepted 12 Nov 2015, Published online: 25 Feb 2016

References

  • A. Jouyban, S. Soltanpour, and H.-K. Chan, A simple relationship between dielectric constant of mixed solvents with solvent composition and temperature, Int. J. Pharm. 269 (2004), pp. 353–360.
  • Y. Zhang, J. Yang, and Y.-X. Yu, Dielectric constant and density dependence of the structure of supercritical carbon dioxide using a new modified empirical potential model: A Monte Carlo simulation study, J. Phys. Chem. B 109 (2005), pp. 13375–13382.
  • P. Graf, A. Nitzan, M.G. Kurnikova, and R.D. Coalson, A dynamic lattice Monte Carlo model of ion transport in inhomogeneous dielectric environments: Method and implementation, J. Phys. Chem. B 104 (2000), pp. 12324–12338.
  • M. Louhi-Kultanen, A.L. Arnalot, L. Nyström, and J. Kallas, An insight into interparticle forces and filterability of potassium sulphate crystals precipitated with ethanol and acetone, Proceedings of European Congress of Chemical Engineering (ECCE-6), R. Gani and K. Dam-Johansen, eds., Copenhagen, 16-20 September (2007), Kongens Lyngby, Technical University of Denmark, Denmark.
  • G. Larsen and M. Skotak, Co-solvent mediated fiber diameter and fiber morphology control in electrospinning of sol–gel formulations, J. Non-Cryst. Solids 354 (2008), pp. 5547–5554.
  • P. Graf, M.G. Kurnikova, R.D. Coalson, and A. Nitzan, Comparison of dynamic lattice Monte Carlo simulations and the dielectric self-energy Poisson−Nernst−Planck continuum theory for model ion channels, J. Phys. Chem. B 108 (2004), pp. 2006–2015.
  • K.L. Kelly, E. Coronado, L.L. Zhao, and G.C. Schatz, The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment, J. Phys. Chem. B 107 (2002), pp. 668–677.
  • K.H. Bhatt and O.D. Velev, Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires, Langmuir 20 (2003), pp. 467–476.
  • A.R. Katritzky, M. Kuanar, S. Slavov, C.D. Hall, M. Karelson, I. Kahn, and D.A. Dobchev, Quantitative correlation of physical and chemical properties with chemical structure: Utility for prediction, Chem. Rev. 110 (2010), pp. 5714–5789.
  • P. Wang and A. Anderko, Computation of dielectric constants of solvent mixtures and electrolyte solutions, Fluid Phase Equilib. 186 (2001), pp. 103–122.
  • T. Le, V.C. Epa, F.R. Burden, and D.A. Winkler, Quantitative structure–property relationship modeling of diverse materials properties, Chem. Rev. 112 (2012), pp. 2889–2919.
  • R.C. Schweitzer and J.B. Morris, The development of a quantitative structure property relationship (QSPR) for the prediction of dielectric constants using neural networks, Anal. Chim. Acta 384 (1999), pp. 285–303.
  • R.C. Schweitzer and J.B. Morris, Improved Quantitative structure property relationships for the prediction of dielectric constants for a set of diverse compounds by subsetting of the data set, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 1253–1261.
  • M. Cocchi, P.G. De Benedetti, R. Seeber, L. Tassi, and A. Ulrici, Development of quantitative structure−property relationships using calculated descriptors for the prediction of the physicochemical properties (nD, ρ, bp, ε, η) of a series of organic solvents, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 1190–1203.
  • S. Sild and M. Karelson, A general QSPR treatment for dielectric constants of organic compounds, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 360–367.
  • J. Liu, W.V. Wilding, N.F. Giles, and R.L. Rowley, A quantitative structure property relation correlation of the dielectric constant for organic chemicals, J. Chem. Eng. Data 55 (2010), pp. 41–45.
  • J. Liu, W.V. Wilding, and R.L. Rowley, A local-composition model for the prediction of mixture dielectric constants, J. Chem. Eng. Data 56 (2011), pp. 2430–2437.
  • A. Lee, D. Kim, K.-H. Kim, S.-H. Choi, K. Choi, and D. Jung, Elucidation of specific aspects of dielectric constants of conjugated organic compounds: A QSPR approach, J. Mol. Model. 18 (2012), pp. 251–256.
  • F. Gharagheizi, QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network, QSAR Comb. Sci. 27 (2008), pp. 165–170.
  • J. Xu, L. Wang, G. Liang, L. Wang, and X. Shen, A general quantitative structure–property relationship treatment for dielectric constants of polymers, Polym. Eng. Sci. 51 (2011), pp. 2408–2416.
  • G. Liang, J. Xu, and L. Liu, QSPR analysis for melting point of fatty acids using genetic algorithm based multiple linear regression (GA-MLR), Fluid Phase Equilib. 353 (2013), pp. 15–21.
  • B. Hemmateenejad and M. Yazdani, QSPR models for half-wave reduction potential of steroids: A comparative study between feature selection and feature extraction from subsets of or entire set of descriptors, Anal. Chim. Acta 634 (2009), pp. 27–35.
  • F. Alves de Lima Ribeiro, and M.M.C. Ferreira, QSPR models of boiling point, octanol–water partition coefficient and retention time index of polycyclic aromatic hydrocarbons, J. Mol. Struct. THEOCHEM 663 (2003), pp. 109–126.
  • C. Sârbu, C. Onişor, M. Posa, S. Kevresan, and K. Kuhajda, Modeling and prediction (correction) of partition coefficients of bile acids and their derivatives by multivariate regression methods, Talanta 75 (2008), pp. 651–657.
  • M. Shamsipur, R. Ghavami, H. Sharghi, and B. Hemmateenejad, Highly correlating distance/connectivity-based topological indices: 5. Accurate prediction of liquid density of organic molecules using PCR and PC-ANN, J. Mol. Graphics Modell. 27 (2008), pp. 506–511.
  • Z. Daren, QSPR studies of PCBs by the combination of genetic algorithms and PLS analysis, Comput. Chem. 25 (2001), pp. 197–204.
  • L. Li, S. Xie, H. Cai, X. Bai, and Z. Xue, Quantitative structure–property relationships for octanol–water partition coefficients of polybrominated diphenyl ethers, Chemosphere 72 (2008), pp. 1602–1606.
  • H. Golmohammadi and Z. Dashtbozorgi, Quantitative structure–property relationship studies of gas-to-wet butyl acetate partition coefficient of some organic compounds using genetic algorithm and artificial neural network, Struct. Chem. 21 (2010), pp. 1241–1252.
  • M.H. Fatemi and F. Karimian, Prediction of micelle–water partition coefficient from the theoretical derived molecular descriptors, J. Colloid Interface Sci. 314 (2007), pp. 665–672.
  • X. Yu, B. Yi, F. Liu, and X. Wang, Prediction of the dielectric dissipation factor tan δ of polymers with an ANN model based on the DFT calculation, React. Funct. Polym. 68 (2008), pp. 1557–1562.
  • Y. Zhang, An improved QSPR study of standard formation enthalpies of acyclic alkanes based on artificial neural networks and genetic algorithm, Chemom. Intell. Lab. Syst. 98 (2009), pp. 162–172.
  • J. Tetteh, E. Metcalfe, and S.L. Howells, Optimisation of radial basis and backpropagation neural networks for modelling auto-ignition temperature by quantitative-structure property relationships, Chemom. Intell. Lab. Syst. 32 (1996), pp. 177–191.
  • X.J. Yao, A. Panaye, J.P. Doucet, H.F. Chen, R.S. Zhang, B.T. Fan, M.C. Liu, and Z.D. Hu, Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks, Anal. Chim. Acta 535 (2005), pp. 259–273.
  • A. Afantitis, G. Melagraki, K. Makridima, A. Alexandridis, H. Sarimveis, and O. Iglessi-Markopoulou, Prediction of high weight polymers glass transition temperature using RBF neural networks, J. Mol. Struct. THEOCHEM 716 (2005), pp. 193–198.
  • C. Nantasenamat, C. Isarankura-Na-Ayudhya, T. Naenna, and V. Prachayasittikul, Prediction of bond dissociation enthalpy of antioxidant phenols by support vector machine, J. Mol. Graphics Modell. 27 (2008), pp. 188–196.
  • A. Niazi, S. Jameh-Bozorghi, and D. Nori-Shargh, Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines, J. Hazard. Mater. 151 (2008), pp. 603–609.
  • S. Yang, W. Lu, N. Chen, and Q. Hu, Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes, J. Mol. Struct. THEOCHEM 719 (2005), pp. 119–127.
  • A. Toubaei, H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, QSPR studies for predicting gas to acetone and gas to acetonitrile solvation enthalpies using support vector machine, J. Mol. Liq. 175 (2012), pp. 24–32.
  • P.W. Holland and R.E. Welsch, Robust regression using iteratively reweighted least-squares, Commun. Stat. Theory Methods 6 (1977), pp. 813–827.
  • M. Kompany-Zareh and N. Omidikia, Jackknife-based selection of Gram−Schmidt orthogonalized descriptors in QSAR, J. Chem. Inf. Model. 50 (2010), pp. 2055–2066.
  • M. Shahlaei, Descriptor selection methods in quantitative structure–activity relationship studies: A review study, Chem. Rev. 113 (2013), pp. 8093–8103.
  • R. Leardi, Genetic algorithms, in Comprehensive Chemometrics, S.D. Brown, R. Tauler, and B. Walczak, eds., Elsevier, Oxford, 2009, pp. 631–653.
  • R. Leardi, R. Boggia, and M. Terrile, Genetic algorithms as a strategy for feature selection, J. Chemom. 6 (1992), pp. 267–281.
  • H. Kubinyi, Evolutionary variable selection in regression and PLS analyses, J. Chemom. 10 (1996), pp. 119–133.
  • B. Hemmateenejad, R. Miri, M. Akhond, and M. Shamsipur, QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives. An application of genetic algorithm for variable selection in MLR and PLS methods, Chemom. Intell. Lab. Syst. 64 (2002), pp. 91–99.
  • S. Sagrado and M.T.D. Cronin, Application of the modelling power approach to variable subset selection for GA-PLS QSAR models, Anal. Chim. Acta 609 (2008), pp. 169–174.
  • K. Tang and T. Li, Combining PLS with GA-GP for QSAR, Chemom. Intell. Lab. Syst. 64 (2002), pp. 55–64.
  • K. Hasegawa, T. Kimura, and K. Funatsu, GA Strategy for variable selection in QSAR studies: Enhancement of comparative molecular binding energy analysis by GA-Based PLS method, Quant. Struct.-Act. Relat. 18 (1999), pp. 262–272.
  • K.B. Flanagan, K.R. Hoover, O. Garza, A. Hizon, T. Soto, N. Villegas, W.E. Acree, and M.H. Abraham, Mathematical correlation of 1-chloroanthraquinone solubilities in organic solvents with the Abraham solvation parameter model, Phys. Chem. Liq. 44 (2006), pp. 377–386.
  • J.H. Hildebrand and R.L. Scott, The Solubility of Nonelectrolytes, 3rd ed., Reinhold, New York, NY, 1950.
  • C.M. Hansen, Hansen Solubility Parameters: A User's Handbook, 2nd ed., CRC Press, Boca Raton, FL, 2007.
  • A. Jouyban and S. Soltanpour, Prediction of dielectric constants of binary solvents at various temperatures, J. Chem. Eng. Data 55 (2010), pp. 2951–2963.
  • E.R. Malinowski, Factor Analysis in Chemistry, 3rd ed., John Wiley & Sons, New York, NY, 2002.
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678.
  • R. Kiralj and M.M.C. Ferreira, Is your QSAR/QSPR descriptor real or trash?, J. Chemom. 24 (2010), pp. 681–693.
  • N. Omidikia and M. Kompany-Zareh, Uninformative variable elimination assisted by Gram-Schmidt Orthogonalization/successive projection algorithm for descriptor selection in QSAR, Chemom. Intell. Lab. Syst. 128 (2013), pp. 56–65.
  • B. Baranowski, Non-equilibrium thermodynamics as applied to membrane transport, J. Membr. Sci. 57 (1991), pp. 119–159.
  • T. Simonson and C.L. Brooks, Charge screening and the dielectric constant of proteins: Insights from molecular dynamics, J. Am. Chem. Soc. 118 (1996), pp. 8452–8458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.