182
Views
6
CrossRef citations to date
0
Altmetric
Articles

The selectivity and promiscuity of brain-neuroregenerative inhibitors between ROCK1 and ROCK2 isoforms: An integration of SB-QSSR modelling, QM/MM analysis and in vitro kinase assay

, &
Pages 47-65 | Received 02 Jul 2015, Accepted 13 Dec 2015, Published online: 08 Feb 2016

References

  • M. Amano, M. Nakayama, and K. Kaibuchi, Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity, Cytoskeleton 67 (2010), pp. 545–554.
  • E.E. Govek, S.E. Newey, and L. van Aelst, The role of the Rho GTPases in neuronal development, Genes Dev. 19 (2005), pp. 1–49.
  • A. Schmandke, A. Schmandke, and S.M. Strittmatter, ROCK and Rho: Biochemistry and neuronal functions of Rho-associated protein kinases, Neuroscientist 13 (2007), pp. 454–469.
  • B.K. Mueller, H. Mack, and N. Teusch, Rho kinase, a promising drug target for neurological disorders, Nat. Rev. Drug Discov. 4 (2005), pp. 387–398.
  • L. Julian and M.F. Olson, Rho-associated coiled-coil containing kinases (ROCK): Structure, regulation, and functions, Small GTPases 5 (2014), p. e29846.
  • O. Nakagawa, K. Fujisawa, T. Ishizaki, Y. Saito, K. Nakao, and S. Narumiya, ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice, FEBS Lett. 392 (1996), pp. 189–193.
  • J. Shi, X. Wu, M. Surma, S. Vemula, L. Zhang, Y. Yang, R. Kapur, and L. Wei, Distinct roles for ROCK1 and ROCK2 in the regulation of cell detachment, Cell Death Dis. 4 (2013), p. e483.
  • T. Kubo, K. Hata, A. Yamaguchi, and T. Yamashita, Rho-ROCK inhibitors as emerging strategies to promote nerve regeneration, Curr. Pharm. Des. 13 (2007), pp. 2493–2499.
  • J.K. Liao, M. Seto, and K. Noma, Rho kinase (ROCK) inhibitors, J. Cardiovasc. Pharmacol. 50 (2007), pp. 17–24.
  • J.H. Lee, Y. Zheng, D. von Bornstadt, Y. Wei, A. Balcioglu, A. Daneshmand, N. Yalcin, E. Yu, F. Herisson, Y.B. Atalay, M.H. Kim, Y.J. Ahn, M. Balkaya, P. Sweetnam, O. Schueller, M.V. Poyurovsky, H.H. Kim, E.H. Lo, K.L. Furie, and C. Ayata, Selective ROCK2 inhibition in focal cerebral ischemia, Ann. Clin. Transl. Neurol. 1 (2014), pp. 2–14.
  • C. Hahmann and T. Schroeter, Rho-kinase inhibitors as therapeutics: From pan inhibition to isoform selectivity, Cell. Mol. Life Sci. 67 (2010), pp. 171–177.
  • P. Wang, Y. Yang, Q. Shao, and W. Zhou, Selective inhibition of ROCK kinase isoforms to promote neuroregeneration after brain surgery, Med. Chem. Res. 25 (2016), pp. 40–50. doi:10.1007/s00044-015-1463-0.
  • S. Kim, P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S.H. Bryant, PubChem substance and compound databases, Nucl. Acids Res. 44 (2016), pp. D1202–D1213. doi:10.1093/nar/gkv951.
  • D.S. Wishart, C. Knox, A.C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey, DrugBank: A comprehensive resource for in silico drug discovery and exploration, Nucl. Acids Res. 34 (2006), pp. D668–D672.
  • M.L. Benson, R.D. Smith, N.A. Khazanov, B. Dimcheff, J. Beaver, P. Dresslar, J. Nerothin, and H.A. Carlson, Binding MOAD, a high-quality protein–ligand database, Nucl. Acids Res. 36 (2008), pp. D674–D678.
  • T. Liu, Y. Lin, X. Wen, R.N. Jorrisen, and M.K. Gilson, BindingDB: A web-accessible database of experimentally determined protein–ligand binding affinities, Nucl. Acids Res. 35 (2007), pp. D198–D201.
  • H. Chen, T. Sun, H. Chen, R. Tian, T. Zhang, Z. Chen, and Z. Ni, Structural and energetic insights into the selective interactions of monoacylglycerol lipase with its natural substrate and small-molecule inhibitors, Med. Chem. Res. 23 (2014), pp. 2391–2404.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461.
  • N.M. O'Boyle, M. Banck, C.A. James, C. Morley, T. Vandermeersch, and G.R. Hutchison, Open Babel: An open chemical toolbox, J. Cheminform. 3 (2011), p. 33.
  • T.A. Halgren, Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94, J. Comput. Chem. 17 (1996), pp. 490–519.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, B.K. Belew, D.S. Goodsell, and A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009), pp. 2785–2791.
  • C. Uniprot, Ongoing and future developments at the Universal Protein Resource, Nucl. Acids Res. 39 (2010), pp. D214–D219.
  • F. Tian, P. Zhou, W. Kang, L. Luo, X. Fan, J. Yan, and H. Liang, The small-molecule inhibitor selectivity between IKKα and IKKβ kinases in NF-κB signaling pathway, J. Rec. Sig. Trans. Res. 35 (2015), pp. 307–318. doi:10.3109/10799893.2014.980950.
  • P. Zhou, F. Tian, and Z. Li, Three dimensional holographic vector of atomic interaction field (3D-HoVAIF), Chemometr. Intel. Lab. Syst. 87 (2007), pp. 88–94.
  • A. Ben-Hur and J. Weston, A user’s guide to support vector machines, Methods Mol. Biol. 609 (2010), pp. 223–239.
  • P. Zhou, F. Tian, F. Lv, and Z. Shang, Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome, J. Chromatogr. A 1216 (2009), pp. 3107–3116.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • F. Tian, Y. Lv, and L. Yang, Structure-based prediction of protein–protein binding affinity with consideration of allosteric effect, Amino Acids 43 (2012), pp. 531–543.
  • H.M. Senn and W. Thiel, QM/MM methods for biomolecular systems, Angew. Chem. Int. Ed. Engl. 48 (2009), pp. 1198–229.
  • F. Fogolari, A. Brigo, and H. Molinarim, The Poisson-Boltzmann equation for biomolecular electrostatics: A tool for structural biology, J. Mol. Recog. 15 (2002), pp. 377–392.
  • J. Lu, Z. Zhang, Z. Ni, H. Shen, Z. Tu, H. Liu, and R. Lu, QM/MM-PB/SA scoring of the interaction strength between Akt kinase and apigenin analogues, Comput. Biol. Chem. 52 (2014), pp. 25–33.
  • W. Rocchia, E. Alexov, and B. Honig, Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions, J. Phys. Chem. 105 (2001), pp. 6507–6514.
  • R. Pireddu, K.D. Forinash, N.N. Sun, M.P. Martin, S.S. Sung, B. Alexander, J.Y. Zhu, W.C. Guida, E. Schönbrunn, S.M. Sebti, and N.J. Lawrence, Pyridylthiazole-based ureas as inhibitors of Rho associated protein kinases (ROCK1 and 2), Medchemcomm 3 (2012), pp. 699–709.
  • D. Bhattacharya and J. Cheng, 3Drefine: Consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization, Proteins 81 (2013), pp. 119–131.
  • I.J. Tickle, P.A. Laskowski, and D.S. Moss, Error estimates of protein structure coordinates and deviations from standard geometry by full-matrix refinement of gammaB- and betaB2-crystallin, Acta Crystallogr. D Biol. Crystallogr. 54 (1998), pp. 243–252.
  • J.J. Irwin and B.K. Shoichet, ZINC – a free database of commercially available compounds for virtual screening, J. Chem. Inf. Model. 45 (2005), pp. 177–182.
  • S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme, and M. Schroeder, PLIP: Fully automated protein–ligand interaction profiler, Nucl. Acids Res. 43 (2015), pp. W443–W447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.