313
Views
15
CrossRef citations to date
0
Altmetric
Articles

Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches

, &
Pages 67-85 | Received 13 Oct 2015, Accepted 14 Dec 2015, Published online: 08 Feb 2016

References

  • D.E. Mager, Target-mediated drug disposition and dynamics, Biochem. Pharmacol. 72 (2006), pp. 1–10.
  • F. Zsila, I. Fitos, G. Bencze, G. Keri, and L. Orfi, Determination of human serum α1 acid glycoprotein and albumin binding of various marketed and preclinical kinase inhibitors, Curr. Med. Chem. 16 (2009), pp. 1964–1977.
  • N.A. Kratochwil, W. Huber, F. Müller, M. Kansy, and P.R. Gerber, Predicting plasma protein binding of drugs: A new approach, Biochem. Pharmacol. 64 (2002), pp. 1355–1374.
  • S. Urien, J.P. Tillement, and J. Barré, The significance of plasma-protein binding in drug research, in Pharmacokinetic Optimization in Drug Research, B. Testa, H. van de Waterbeemd, G. Folkers, and R. Guy, eds., Wiley-VCH, Zürich, 2001, pp. 189–197.
  • G. Colmenarejo, In silico prediction of plasma and tissue protein binding, in Comprehensive Medicinal Chemistry II, J.B. Taylor and D.J. Triggle, Vol. 5, Oxford, Elsevier, 2007, pp. 847–866.
  • S.S. Jambhekar, Physicochemical and biopharmaceutical properties of drug substances and pharmacokinetics, in Foye's Principles of Medicinal Chemistry, W.O. Foye, T.L. Lemke, and D.A. Williams, eds., Lippincott Williams and Wilkins, New York, NY, 2008, pp. 247–250.
  • T. Ghafourian and Z. Amin, QSAR models for the prediction of plasma protein binding, Bioimpacts 3 (2013), pp. 21–27.
  • T. Hanai, R. Miyazaki, E. Kamijima, H. Homma, and T. Kinoshita, Computational prediction of drug–albumin binding affinity by modeling liquid chromatographic interactions, Internet Electron. J. Mol. Des. 2 (2003), pp. 702–711.
  • P.J. Hajduk, R. Mendoza, A.M. Petros, J.R. Huth, M. Bures, S.W. Fesik, and Y.C. Martin, Ligand binding to domain-3 of human serum albumin: A chemometric analysis, J. Comput. Aided Mol. Des. 17 (2003), pp. 93–102.
  • K. Yamazaki and M. Kanaoka, Computational prediction of the plasma protein-binding percent of diverse pharmaceutical compounds, J. Pharm. Sci. 93 (2004), pp. 1480–1494.
  • C.X. Xue, R.S. Zhang, H.X. Liu, X.J. Yao, M.C. Liu, Z.D. Hu, and B.T. Fan, QSAR models for the prediction of binding affinities to human serum albumin using the heuristic method and a support vector machine, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1693–1700.
  • R.J. Votano, M. Parham, L.M. Hall, L.H. Hall, B.J. Kier, S. Oloff, and A. Tropsha, QSAR modelling of human serum protein binding with several modelling techniques utilizing structure-information representation, J. Med. Chem. 49 (2006), pp. 7169–7181.
  • T.L. Moda, C.A. Montanari, and D. Andricopulo, In silico prediction of human plasma protein binding using hologram QSAR, Lett. Drug Des. Discov. 4 (2007), pp. 502–509.
  • H. Li, Z. Chen, X. Xu, X. Sui, T. Guo, W. Liu, and J. Zhang, Predicting human plasma protein binding of drugs using plasma protein interaction QSAR analysis (PPI-QSAR), Biopharm. Drug Dispos. 32 (2011), pp. 333–342.
  • Z. Zhivkova and I. Doytchinova, Quantitative structure–plasma protein binding relationships of acidic drugs, J. Pharm. Sci. 101 (2012), pp. 4627–4641.
  • X.W. Zhu, A. Sedykh, H. Zhu, S.S. Liu, and A. Tropsha, The use of pseudo-equilibrium constant affords improved QSAR models of human plasma protein binding, Pharmaceut. Res. 30 (2013), pp. 1790–1798.
  • D. Ma, Y. Guo, J. Luo, X. Pu, and M. Li, Prediction of protein–protein binding affinity using diverse protein–protein interface features, Chemom. Intell. Lab. Syst. 138 (2014), pp. 7–13.
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678.
  • K.P. Singh, S. Gupta, and P. Rai, Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches, Ecotox. Environ. Safe. 95 (2013), pp. 221–233.
  • Organization for Economic Cooperation and Development (OECD), Guidance Document on the Validation of (Quantitative) Structure–Activity Relationships [(Q)SAR] Models, ENV/JM/MONO 2 (2007), 2007, pp. 1–154.
  • F. Anctil and N. Lauzon, Generalization for neural networks through data sampling and training procedures with applications to stream flow predictions, Hydrol. Earth Syst. Sci. 8 (2004), pp. 940–958.
  • T.H. Snelder, N. Lamouroux, J.R. Leathwick, H. Pella, E. Sauquet, and U. Shanker, Predictive mapping of the natural flow regimes of France, J. Hydrol. 373 (2009), pp. 57–67.
  • K.P. Singh, S. Gupta, A. Kumar, and D. Mohan, Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology, Chem. Res. Toxicol. 27 (2014), pp. 741–753.
  • K.P. Singh, S. Gupta, and N. Basant, Predicting toxicities of ionic liquids in multiple test species – An aid in designing of green chemicals, RSC Adv. 4 (2014), pp. 64443–64456.
  • K.P. Singh, S. Gupta, and N. Basant, QSTR modeling for predicting aquatic toxicity of pharmacological active compounds in multiple test species for regulatory purpose, Chemosphere 120 (2015), pp. 680–689.
  • K.P. Singh, S. Gupta, and N. Basant, In silico prediction of cellular permeability of diverse chemicals using qualitative and quantitative QSAR modeling approaches, Chemom. Intell. Lab. Syst. 140 (2015), pp. 61–72.
  • N. Basant, S. Gupta, and K.P. Singh, Predicting toxicities of structurally diverse chemical pesticides in multiple aquatic test species using QSTR modeling approaches, Chemosphere 139 (2015), pp. 246–255.
  • N. Basant, S. Gupta, and K.P. Singh, Predicting toxicities of diverse chemical pesticides in multiple avian species using tree-based QSAR approaches for regulatory purposes, J. Chem. Inf. Model. 55 (2015), pp. 1337–1348.
  • T.G. Dietterich, Ensemble methods in machine learning, Lect. Notes Comput. Sci. 2000 (1857), pp. 1–15.
  • C.X. Zhang, J.S. Zhang, and G.W. Wang, An empirical study of using rotation forest to improve regressors, Appl. Math Comput. 195 (2008), pp. 618–629.
  • L. Breiman, Bagging predictors, Mach. Learn. 24 (1996), pp. 123–140.
  • J.H. Friedman, Stochastic gradient boosting, Comput. Stat. Data Anal. 38 (2002), pp. 367–378.
  • Chemspider; available at www.chemspider.com.
  • MOSES descriptor Community edition; available at http://www.molecular-networks.com/services/mosesdescriptors.
  • C. Steinbeck, Y. Han, S. Kuhn, O. Horlacher, E. Luttmann, and E. Willighagen, The chemistry development kit (CDK): An open-source java library for chemo- and bioinformatics, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 493–500.
  • P.W. Manley, N. Stiefl, S.W. Cowan-Jacob, S. Kaufman, J. Mestan, M. Wartmann, M. Wiesmann, R. Woodmanb, and N. Gallagher, Structural resemblances and comparisons of the relative pharmacological properties of imatinib and nilotinib, Bioorg. Med. Chem. 18 (2010), pp. 6977–6986.
  • Y. Xue, H. Li, C.Y. Ung, C.W. Yap, and Y.Z. Chen, Classification of a diverse set of Tetrahymena pyriformis toxicity chemical compounds from molecular descriptors by statistical learning methods, Chem. Res. Toxicol. 19 (2006), pp. 1030–1039.
  • K.P. Singh, S. Gupta, and P. Rai, Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches, Toxicol. Appl. Pharmacol. 272 (2013), pp. 465–475.
  • P. Yang, Y.H. Yang, B.B. Zhou, and A.Y. Zomaya, A review of ensemble methods in bioinformatics, Curr. Bioinform. 5 (2010), pp. 296–308.
  • L. Lam and C.Y. Suen, Application of majority voting to pattern recognition: An analysis of its behavior and performance, IEEE Trans, Syst. Man Cybern. A Syst. Humans 27 (1997), pp. 553–568.
  • R. Pino-Mejias, M.D. Jimenez-Gamero, M.D. Cubiles-de-la-Vega, and A. Pascual-Acosta, Reduced bootstrap aggregating of learning algorithms, Pattern Recogn. Lett. 29 (2008), pp. 265–271.
  • K.P. Singh, S. Gupta, and D. Mohan, Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches, J. Hydrol. 511 (2014), pp. 254–266.
  • J.F. Chenard and D. Caissie, Stream temperature modelling using neural networks: Application on Catamaran Brook, New Brunswick, Canada, Hydrol. Process. 22 (2008), pp. 3361–3372.
  • I. Mitra, A. Saha, and K. Roy, Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants, Mol. Simul. 36 (2010), pp. 1067–1079.
  • J.A. Cooper, R. Saracci, and P. Cole, Describing the validity of carcinogen screening test, Br. J. Cancer. 39 (1979), pp. 87–89.
  • B.W. Matthews, Comparison of the predicted and observed secondary structure of T4 phase lysozyme, Biochim. Biophys. Acta 405 (1975), pp. 442–451.
  • L.I. Lin, Assay validation using the concordance correlation coefficient, Biometrics 48 (1992), pp. 599–604.
  • L.M. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, R.M. Blair, W.S. Branham, S.L. Dial, C.L. Moland, and D.M. Sheehan, QSAR models using a large diverse set of estrogens, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 186–195.
  • G. Schuurmann, R. Ebert, J. Chen, B. Wang, and R. Kuhne, External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean, J. Chem. Inf. Model. 48 (2008), pp. 2140–2145.
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058.
  • A. Tropsha, A. Golbraikh, and W.J. Cho, Development of kNN QSAR models for 3-arylisoquinoline antitumor agents, Bull. Korean. Chem. Soc. 32 (2011), pp. 2397–2404.
  • T.I. Netzeva, A.P. Worth, A. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patliwicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.P. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationship, ATLA 33 (2005), pp. 155–173.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • P. Hajek, V. Olej, and R. Myskova, Forecasting stock prices using sentiment information in annual reports – A neural network and support vector regression approach, BAE 10 (2013), pp. 293–305.
  • T. Kanungo and D. Orr, Predicting the readability of short web summaries, In ProceedingWSDM'09 Proceedings of the Second ACM International Conference on Web Search and Data Mining, ACM, New York, NY, USA, 2009, pp. 202–211, http://dx.doi.org/10.1145/1498759.1498827.
  • P. Stenberg, C.A. Bergstrom, K. Luthman, and P. Artursson, Theoretical predictions of drug absorption in drug discovery and development, Clin. Pharmacokinet. 41 (2002), pp. 877–899.
  • T.J. Hou, W. Zhang, K. Xia, X.B. Qiao, and X.J. Xu, ADME evaluation in drug discovery. 5. Correlation of Caco-2 permeation with simple molecular properties, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1585–1600.
  • P. Paixão, L.F. Gouveia, and J.A.G. Morais, Prediction of the in vitro permeability determined in Caco-2 cells by using artificial neural networks, Eur. J. Pharm. Sci. 41 (2010), pp. 107–117.
  • G.M. Crippen, Chirality descriptors in QSAR, Curr. Comput. Aided Drug Des. 4 (2008), pp. 259–264.
  • C. Suenderhauf, F. Hammann, and J. Huwyler, Computational prediction of blood-brain barrier permeability using decision tree induction, Molecules 17 (2012), pp. 10429–10445.
  • A.D.I. Nuez and R. Rodríguez, Current methodology for the assessment of ADME-Tox properties on drug candidate molecules, Biotecnol. Apl. 25 (2008), pp. 97–110.
  • N. Fjodorova, M. Vracko, M. Novic, A. Roncaglioni, and E. Benfenati, New public QSAR models for carcinogenicity, Chem. Cent. J. 4 (2010), pp. 1–15.
  • F. Cheng, J. Shen, Y. Yu, W. Li, G. Liu, P.W. Lee, and Y. Tang, In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods, Chemosphere 82 (2011), pp. 1636–1643.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.