476
Views
27
CrossRef citations to date
0
Altmetric
Articles

QSAR study of the acute toxicity to fathead minnow based on a large dataset

, &
Pages 147-164 | Received 24 Nov 2015, Accepted 28 Dec 2015, Published online: 25 Feb 2016

References

  • OECD, Guidance document on the validation of (Quantitative) structure–activity relationships [(Q)SAR] models, Organisation for Economic Co-Operation and Development, Paris, France, 2007.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, R.A. Drummond, and D.E. Hammermeister, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
  • H.J.M. Verhaar, C.J. Van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491.
  • H.J.M. Verhaar, J. Solbe′, J. Speksnijder, C.J. Van Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants: Part 3, External validation of the classification system, Chemosphere 40 (2000), pp. 875–883.
  • Toxtree Version 2.6.0, software available at http://toxtree.sourceforge.net/
  • S. Ren, Ecotoxicity prediction using mechanism- and nonmechanism-based QSARs: A preliminary study, Chemosphere 53 (2003), pp. 1053–1065.
  • T.I. Netzeva, M. Pavan, and A.P. Worth, Review of (quantitative) structure-activity relationships for acute aquatic toxicity, QSAR Comb. Sci. 27 (2008), pp. 77–90.
  • T.M. Martin, D.M. Young, C.R. Lilavois, and M.G. Barron, Comparison of global and mode of action-based models for aquatic toxicity, SAR QSAR Environ. Res. 26 (2015), pp. 245–265.
  • S.C. Basak and V.R. Magnuson, Molecular topology and narcosis. A quantitative structure-activity relationship (QSAR) study of alcohols using complementary information content (CIC), Arzneim. -Forschung, Drug Res. 33 (1983), pp. 501–503.
  • S.C. Basak, D.P. Gieschen, and V.R. Magnuson, A quantitative correlation of the LC50 values of esters in Pimephales promelas using physicochemical and topological parameters, Environ. Toxicol. Chem. 3 (1984), pp. 191–199.
  • L.D. Newsome, D.E. Johnson, R.L. Lipnick, S.J. Broderius, and C.L. Russom, A QSAR study of the toxicity of amines to the fathead minnow, Sci. Total Environ. 109 (1991), pp. 537–551.
  • G.D. Veith and S.J. Broderius, Structure-toxicity relationships for industrial chemicals causing type (II) narcosis syndrome, in QSAR in Environmental Toxicology, K.L.E. Kaiser, ed., Springer, The Netherlands, 1987, pp. 385–391.
  • G.D. Veith, D.J. Call, and L.T. Brooke, Structure-toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals, Can. J. Fish. Aquat. Sci. 40 (1983), pp. 743–748.
  • A.P. Bearden and T.W. Schultz, Structure-activity relationships for Pimephales and Tetrahymena: A mechanism of action approach, Environ. Toxicol. Chem. 16 (1997), pp. 1311–1317.
  • M. Nendza and M. Müller, Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors, Quant. Struct.-Act. Rel, 19 (2000), pp. 581–598.
  • A.O. Aptula, T.I. Netzeva, I.V. Valkova, M.T.D. Cronin, T.W. Schultz, R. Kühne, and G. Schüürmann, Multivariate discrimination between modes of toxic action of phenols, Quant. Struct.-Act. Rel, 21 (2002), pp. 12–22.
  • S.C. Basak, G.D. Grunwald, G.E. Host, G.J. Niemi, and S.P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action, Environ. Toxicol. Chem. 17 (1998), pp. 1056–1064.
  • U. Norinder, P. Lidén, and H. Boström, Discrimination between modes of toxic action of phenols using rule based methods, Mol. Divers. 10 (2006), pp. 207–212.
  • G. Schüürmann, A.O. Aptula, R. Kühne, and R.-U. Ebert, Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay, Chem Res. Toxicol. 16 (2003), pp. 974–987.
  • T.M. Martin, D.M. Young, C.R. Lilavois, and M.G. Barron, Comparison of global and mode of action-based models for aquatic toxicity, SAR QSAR Environ. Res. 26 (2015), pp. 245–262.
  • D.V. Eldred, C.L. Weikel, P.C. Jurs, and K.L.E. Kaiser, Prediction of fathead minnow acute toxicity of organic compounds from molecular structure, Chem. Res. Toxicol. 12 (1999), pp. 670–678.
  • M. Pavan, T.I. Netzeva, and A.P. Worth, Validation of a QSAR model for acute toxicity, SAR QSAR Environ. Res. 17 (2006), pp. 147–171.
  • Y. Wang, M. Zheng, J. Xiao, Y. Lu, F. Wang, J. Lu, X. Luo, W. Zhu, H. Jiang, and K. Chen, Using support vector regression coupled with the genetic algorithm for predicting acute toxicity to the fathead minnow, SAR QSAR Environ. Res. 21 (2010), pp. 559–570.
  • P. Mazzatorta, M. Vracko, A. Jezierska, and E. Benfenati, Modeling toxicity by using supervised Kohonen neural networks, J. Chem. Inf. Model. 43 (2003), pp. 485–492.
  • G. Gini, M.V. Craciun, C. Konig, and E. Benfenati, Combining unsupervised and supervised artificial neural networks to predict aquatic toxicity, J. Chem. Inf. Model. 44 (2004), pp. 1897–1902.
  • B. Hemmateenejad, M.A. Safarpour, R. Miri, and F. Taghavi, Application of ab initio theory to QSAR study of 1, 4-dihydropyridine-based calcium channel blockers using GA-MLR and PC-GA-ANN procedures, J. Comput. Chem. 25 (2004), pp. 1495–1503.
  • J. Li, B. Lei, H. Liu, S. Li, X. Yao, M. Liu, and P. Gramatica, QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling, J. Comput. Chem. 29 (2008), pp. 2636–2647.
  • J.B. Ghasemi, A. Abdolmaleki, and N. Mandoumi, A quantitative structure property relationship for prediction of solubilization of hazardous compounds using GA-based MLR in CTAB micellar media, J. Hazard. Mater. 161 (2009), pp. 74–80.
  • E. Papa, F. Villa, and P. Gramatica, Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow), J. Chem. Inf. Model. 45 (2005), pp. 1256–1266.
  • F. Lyakurwa, X. Yang, X. Li, X. Qiao, and J. Chen, Development and validation of theoretical linear solvation energy relationship models for toxicity prediction to fathead minnow (Pimephales promelas), Chemosphere 96 (2014), pp. 188–194.
  • A. Roncaglioni, E. Benfenati, E. Boriani, and M. Clook, A protocol to select high quality datasets of ecotoxicity values for pesticides, J. Environ. Sci. Heal. B. B39 (2004), pp. 641–652.
  • P.C. von der Ohe, R. Kuhne, R. Ebert, R. Altenburger, M. Liess, and G. Schuurmann, Structural alerts - A new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay, Chem. Res. Toxicol. 18 (2005), pp. 536–555.
  • G.D. Veith, D.J. Call, and L.T. Brooke, Structure-toxicity relationships for the fathead minnow, Pimephales promelas: Narcotic industrial chemicals, Can. J. Fish. Aquat. Sci. 40 (1983), pp. 743–748.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr, J.E. Peralta, F. Ogliaro, M.J. Bearpark, J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N.J. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, A. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Gaussian Inc., Wallingford, CT, USA, 2009.
  • Y. Zhao and D.G. Truhlar, Hybrid Meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions, J. Phys. Chem. A 108 (2004), pp. 6908–6918.
  • X. Wu, X. Sun, C. Zhang, C. Gong, and J. Hu, Micro-mechanism and rate constants for OH-initiated degradation of methomyl in atmosphere, Chemosphere 107 (2014), pp. 331–335.
  • Talete srl, Dragon (Software for Molecular Descriptor Calculation) Version 6.0 – 2014, software available at http://www.talete.mi.it/
  • US Enviromental Protection Agency (US EPA), Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11., US EPA, Washington DC, 2014; software available at http://www.epa.gov/opptintr/exposure/pubs/episuitedl.htm.
  • A.K. Ghose, V.N. Viswanadhan, and J.J. Wendoloski, Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods, J. Phys. Chem. A 102 (1998), pp. 3762–3772.
  • J. Li, B. Lei, H. Liu, S. Li, X. Yao, M. Liu, and P. Gramatica, QSAR study of malonyl-CoA decarboxylase inhibitors using GA-MLR and a new strategy of consensus modeling, J. Comput. Chem. 29 (2008), pp. 2636–2647.
  • R. Todeschini, V. Consonni, and A. Maiocchi, The K correlation index: Theory development and its application in chemometrics, Chemom Int. Lab. Syst. 46 (1999), pp. 13–29.
  • T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (Quantitative) Structure-Activity Relationships. The report and recommendations of ECVAM Workshop 52, Altern. Lab. Anim. 33 (2005), pp. 155–173.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification and regression-based QSARs, Environ. Health. Perspect. 111 (2003), pp. 1361–1375.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, 2000.
  • R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85 (1963), pp. 3533–3539.
  • K. Fukui, T. Yonezawa, and H. Shingu, A molecular orbital theory of reactivity in aromatic hydrocarbons, J. Chem. Phys. 20 (1952), pp. 722–725.
  • G. Klopman, Chemical reactivity and the concept of charge-and frontier-controlled reactions, J. Am. Chem. Soc. 90 (1968), pp. 223–234.
  • L. Salem, Intermolecular orbital theory of the interaction between conjugated systems. I. General theory, J. Am. Chem. Soc. 90 (1968), pp. 543–552.
  • M. Cassotti, D. Ballabio, V. Consonni, A. Mauri, I.V. Tetko, and R. Todeschini, Prediction of acute aquatic toxicity toward Daphnia magna by using the GA-kNN Method, ATLA 42 (2014), pp. 31–41.
  • M. Casalegno, E. Benfenati, and G. Sello, An automated group contribution method in predicting aquatic toxicity: The diatomic fragment approach, Chem. Res. Toxicol. 18 (2005), pp. 740–746.
  • S.P. Niculescu, A. Atkinson, G. Hammond, and M. Lewis, Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow, SAR QSAR Environ. Res. 15 (2004), pp. 293–309.
  • G. Schüürmann, R.-U. Ebert, and R. Kühne, Quantitative read-across for predicting the acute fish toxicity of organic compounds, Environ. Sci. Technol. 45 (2011), pp. 4616–4622.
  • T. Martin, P. Harten, R. Venkatapathy, and D. Young, T.E.S.T. (Toxicity Estimation Software Tool). U.S. E.P.A., 2012; available at http://www.epa.gov/nrmrl/std/qsar/qsar.html.
  • A. Colombo, E. Benfenati, M. Karelson, and U. Maran, The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity, Chemosphere 72 (2008), pp. 772–780.
  • G. Klopman, R. Saiakhov, and H.S. Rosenkranz, Multiple computer-automated structure evaluation study of aquatic toxicity II. Fathead minnow, Environ. Toxicol. Chem. 19 (2000), pp. 441–447.
  • T.I. Netzeva, A.O. Aptula, E. Benfenati, M.T.D. Cronin, G. Gini, I. Lessigiarska, and U. Maran, M. Vračko, and G. Schüürmann, Description of the electronic structure of organic chemicals using semiempirical and ab initio methods for development of toxicological QSARs, J. Chem. Inf. Model. 45 (2005), pp. 106–114.
  • S. Lozano, M.-P. Halm-Lemeille, A. Lepailleur, S. Rault, and R. Bureau, Consensus QSAR related to global or MOA models: Application to acute toxicity for fish, Mol. Inform. 29 (2010), pp. 803–813.
  • M. Nendza and C.L. Russom, QSAR modelling of the ERL-D fathead minnow acute toxicity database, Xenobiotica 21 (1991), pp. 147–170.
  • VEGA Non-Interactive Client. Milano, Italy: Istituto di Ricerche Farmacologiche Mario Negri; available at http://www.vega-qsar.eu/index.php.
  • M. Cassotti, D. Ballabio, R. Todeschini, and V. Consonni, A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas), SAR QSAR Environ. Res. 26 (2015), pp. 217–243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.