531
Views
24
CrossRef citations to date
0
Altmetric
Articles

Conformal prediction to define applicability domain – A case study on predicting ER and AR binding

, &
Pages 303-316 | Received 08 Feb 2016, Accepted 28 Mar 2016, Published online: 18 Apr 2016

References

  • OECD 2004. Available at http://www.oecd.org/env/ehs/risk-assessment/validationofqsarmodels.htm.
  • Joint Meeting of the Chemicals Committee and Working Party on Chemicals, Pesticides and Biotechnology, 2004. Available at http://www.oecd.org/env/ehs/risk-assessment/37849783.pdf.
  • Joint Meeting of the Chemicals Committee and Working Party on Chemicals, Pesticides and Biotechnology, 2007. Available at http://www.oecd.org/officialdocuments/displaydocument/?doclanguage=en&cote=env/jm/mono(2007)2.
  • J. Li and P. Gramatica, QSAR classification of estrogen receptor binders and pre-screening of potential pleiotropic EDCs, SAR QSAR Environ. Res. 21 (2010), pp. 657–669.
  • A. Golbraikh, M. Shen, Z. Xiao, Y.-D. Xiao, K.-H. Lee, and A. Tropsha, Rational selection of training and test sets for the development of validated QSAR models, J. Comput.-Aid. Mol. Des. 17 (2003), pp. 241–253.
  • R.P. Sheridan, Using random forest to model the domain applicability of another random forest model, J. Chem. Inf. Model. 53 (2013), pp. 2837–2850.
  • N. Fechner, A. Jahn, G. Hinselmann, and A. Zell, Estimation of the applicability domain of kernel-based machine learning models for virtual screening, J. Cheminf. 2 (2010), p. 2.
  • E. Diamanti-Kandarakis, J.-P. Bourguignon, L.C. Giudice, R. Hauser, G.S. Prins, A.M. Soto, R.T. Zoeller, and A.C. Gore, Endocrine-disrupting chemicals: An endocrine society scientific statement, Endocrine Rev. 30 (2009), pp. 293–342.
  • WHO/UNEP report, State of the Science of Endocrine Disrupting Chemicals – 2012. Available at http://www.who.int/ceh/publications/endocrine/en/.
  • OECD Work Related to Endocrine Disrupters. Available at http://www.oecd.org/env/ehs/testing/oecdworkrelatedtoendocrinedisrupters.htm.
  • D. Ding, L. Xu, H. Fang, H. Hong, R. Perkins, S. Harris, E.D. Bearden, L. Shi, and W. Tong, The EDKB: An established knowledge base for endocrine disrupting chemicals, BMC Bioinforma. 11(Suppl. 6) (2010), p. S5.
  • G. Klopman and S.K. Chakravarti, Structure-activity relationship study of a diverse set of estrogen receptor ligands (I) using MultiCASE expert system, Chemosphere 51 (2003), pp. 445–459.
  • H. Hong, W. Tong, Q. Xie, H. Fang, and R. Perkins, An in silico ensemble method for lead discovery: Decision forest, SAR QSAR Environ. Res. 16 (2005), pp. 339–347.
  • W. Tong, Q. Xie, H. Hong, L. Shi, H. Fang, and R. Perkins, Assessment of prediction confidence and domain extrapolation of two structure-activity relationship models for predicting estrogen receptor binding activity, Environ. Health Perspect. 112 (2004), pp. 1249–1125.
  • S.P. Korhonen, K. Tuppurainen, R. Laatikainen, and M. Peraekylae, Comparing the performance of FLUFF-BALL to SEAL-CoMFA with a large diverse estrogen data set: From relevant superpositions to solid predictions, J. Chem. Inf. Model. 45 (2005), pp. 1874–1883.
  • T. Ghafourian and M.T.D. Cronin, The effect of variable selection on the non-linear modelling of oestrogen receptor binding, QSAR Comb. Sci. 25 (2006), pp. 824–835.
  • H. Liu, E. Papa, and P. Gramatica, QSAR Prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles, Chem. Res. Toxicol. 19 (2006), pp. 1540–1548.
  • L. Ji, X.D. Wang, S. Luo, L. Qin, X.S. Yang, L. Liu, S. Shu, and L.S. Wang, QSAR study on estrogenic activity of structurally diverse compounds using generalized regression neural network, Sci. China, Ser. B: Chem. 51 (2008), pp. 677–683.
  • L. Ji, X.D. Wang, X.S. Yang, L. Liu, S. Shu, and L.S. Wang, Back-propagation network improved by conjugate gradient based on genetic algorithm in QSAR study on endocrine disrupting chemicals, Chin. Sci. Bull. 53 (2008), pp. 33–39.
  • N. Stojic, S. Eric, and I. Kuzmanovski, Prediction of toxicity and data exploratory analysis of estrogen-active endocrine disruptors using counter-propagation artificial neural networks, J. Mol. Graph. Model. 29 (2010), pp. 450–460.
  • L. Zhang, A. Sedykh, A. Tripathi, H. Zhu, A. Afantitis, V.D. Mouchlis, G. Melagraki, I. Rusyn, and A. Tropsha, Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches, Toxicol. Appl. Pharmacol. 272 (2013), pp. 67–76.
  • METI, Ministry of Economy, Trade and Industry, Japan. Appendix 1 & 2. Data list of RBA values of human ER receptor binding assay, RA and PC 50 values of human ER reporter gene assay, 6th Meeting of the Task Force on Endocrine, Tokyo, Japan, 2002.
  • A. Panaye, J.P. Doucet, J. Devillers, N. Marchand-Geneste, and J.M. Porcher, Decision trees versus support vector machine for classification of androgen receptor ligands, SAR QSAR Environ. Res. 19 (2008), pp. 129–151.
  • Y. Li, Y. Wang, J. Ding, Y. Wang, Y. Chang, and S. Zhang, In silico prediction of androgenic and nonandrogenic compounds using random forest, QSAR Comb. Sci. 28 (2009), pp. 396–405.
  • M. Todorov, E. Mombelli, S. Aït-Aïssa, and O. Mekenyan, Androgen receptor binding affinity: A QSAR evaluation, SAR QSAR Environ. Res. 22 (2011), pp. 265–291.
  • A.M. Vinggaard, J. Niemelä, E.B. Wedebye, and G.E. Jensen, Screening of 397 chemicals and development of a quantitative structure–activity relationship model for androgen receptor antagonism, Chem. Res. Toxicol. 21 (2008), pp. 813–823.
  • J. Li and P. Gramatica, Classification and virtual screening of androgen receptor antagonists, J. Chem. Inf. Model. 50 (2010), pp. 861–874.
  • G.E. Jensen, J.R. Niemela, E.B. Wedebye, and N.G. Nikolov, QSAR models for reproductive toxicity and endocrine disruption in regulatory use - a preliminary investigation, SAR QSAR Environ. Res. 19 (2008), pp. 631–641.
  • H. Li, X. Ren, E. Leblanc, K. Frewin, P.S. Rennie, and A. Cherkasov, Identification of novel androgen receptor antagonists using structure- and ligand-based methods, J. Chem. Inf. Model. 53 (2013), pp. 123–130.
  • H. Hong, H. Fang, Q. Xie, R. Perkins, D.M. Sheehan, and W. Tong, Comparative molecular field analysis (CoMFA) model using a large diverse set of natural, synthetic and environmental chemicals for binding to the androgen receptor, SAR QSAR Environ. Res. 14 (2003), pp. 373–388.
  • H. Fang, W. Tong, W.S. Branham, C.L. Moland, S.L. Dial, H. Hong, Q. Xie, R. Perkins, W. Owens, and D.M. Sheehan, Study of 202 natural, synthetic, and environmental chemicals for binding to the androgen receptor, Chem. Res. Toxicol. 16 (2003), pp. 1338–1358.
  • G.E. Jensen, N.G. Nikolov, E.B. Wedebye, T. Ringsted, and J.R. Niemelä, QSAR models for anti-androgenic effect – a preliminary study, SAR QSAR Environ. Res. 22 (2011), pp. 35–49.
  • V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning in a Random World, Springer, New York, NY, 2005.
  • G.G.J.M. Kuiper, B. Carlsson, K. Grandien, E. Enmark, J. Häggblad, S. Nilsson, and J.-Å. Gustafsson, Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β, Endocrinology 138 (1997), pp. 863–870.
  • M.O. Taha, M. Tarairah, H. Zalloum, and G. Abu-Sheikha, Pharmacophore and QSAR modeling of estrogen receptor β ligands and subsequent validation and in silico search for new hits, J. Mol. Graph. Model. 28 (2010), pp. 383–400.
  • A. Rybacka, C. Rudén, I.V. Tetko, and P.L. Andersson, Identifying potential endocrine disruptors among industrial chemicals and their metabolites – development and evaluation of in silico tools, Chemosphere 139 (2015), pp. 372–378.
  • EBI standardizer. Available at https://pypi.python.org/pypi/standardiser, https://wwwdev.ebi.ac.uk/chembl/extra/francis/standardiser/.
  • MolVS 2015. Available at https://pypi.python.org/pypi/MolVS.
  • J.L. Faulon, M. Collins, and R.D. Carr, The signature molecular descriptor. 4. Canonizing molecules using extended valence sequence, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 427–436.
  • R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, WILEY-VCH, Weinheim, 2000.
  • RDKit, Open-Source Cheminformatics. Available at http://www.rdkit.org.
  • L. Breiman, Random forests, Mach. Learn. 45 (2001), pp. 5–32.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, Scikit-learn: Machine learning in Python, JMLR 12 (2011), pp. 2825–2830.
  • M. Eklund, U. Norinder, S. Boyer, and L. Carlsson, Application of conformal prediction in QSAR, AIAI 382 (2012), pp. 166–175.
  • M. Eklund, U. Norinder, S. Boyer, and L. Carlsson, The application of conformal prediction to the drug discovery process, Ann Math Artif Intell. (2013)doi:10.1007/s10472-013-9378-2.
  • U. Norinder, L. Carlsson, S. Boyer, and M. Eklund, Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination, J. Chem. Inf. Model. 54 (2014), pp. 1596–1603.
  • U. Norinder, L. Carlsson, S. Boyer, and M. Eklund, Introducing conformal prediction in predictive modeling for regulatory purposes, A transparent and flexible alternative to applicability domain determination, Reg Tox Pharm 71 (2015), pp. 279–284.
  • L. Carlsson M. Eklund, and U. Norinder, Aggregated conformal prediction, in Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, L. Iliadis, I. Maglogiannis, H. Papadopoulos, S. Sioutas and C. Makris C, eds., Springer, Berlin Heidelberg, vol. 437, 2014, pp. 231–240.
  • SIMCA 13.0 software package, Umetrics, Umeå, Sweden.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.