186
Views
10
CrossRef citations to date
0
Altmetric
Articles

Towards predicting the solubility of CO2 and N2 in different polymers using a quasi-SMILES based QSPR approach

, , &
Pages 293-301 | Received 23 Feb 2016, Accepted 26 Mar 2016, Published online: 20 Apr 2016

References

  • D. Klempner and K.C. Frisch, Handbook of Polymeric Foams and Foam Technology, Hanser Publishers, Munich, 1991.
  • C.M. Blow and C. Hepburn, Rubber Technology and Manufacture, 2nd ed., Butterworth, London, 1982.
  • R.O. Babbit, The Vanderbilt Rubber Handbook, Vanderbilt Company Inc., Norwalk, CT, 1978.
  • V. Altstädt, F. Diedrichs, T. Lenz, H. Bardenhagen, and D. Jarnot, Polymer foams as core materials in sandwich laminates (comparison with honeycomb), Polym. Polym. Compos. 6 (1998), pp. 295–304.
  • R. Laakso, V. Guffey, and R. Vara, Advances in CM technology for thermoset applications, Rubber World 238 (2008), pp. 23–32.
  • S. Das, P.G.R. Achary, N.C. Naya, and R.N.P. Choudhary, Dielectric response of conductive carbon black filled microcellular ethylene-octene copolymer vulcanizates, Polym. Comp. Intern. (2015), doi:10.1002/pc.23538.
  • N.C. Nayak, P.G.R. Achary, S. Das, and S. Begum, Effect of carbon black on microcellular behavior of ethylene-octene copolymer vulcanizates, Cell. Polym. 33 (2014), pp. 71–86.
  • S.P. Nalawade, F. Picchioni, and L.P.B.M. Janssen, Supercritical carbon dioxide as a green solvent for processing polymer melts: Processing aspects and applications, Prog. Polym. Sci. 31 (2006), pp. 19–43.
  • Y. Sato, T. Takikawa, M. Yamane, S. Takishima, and H. Masuoka, Solubility of carbon dioxide in PPO and PPO/PS blends, Fluid Phase Equilibr. 194 (2002), pp. 847–858.
  • Y. Sato, T. Takikawa, S. Takishima, and H. Masuoka, Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene, J. Supercrit. Fluid. 19 (2001), pp. 187–198.
  • J. Tendulkar, S.R. Upreti, and A. Lohi, Experimental determination of concentration-dependent carbon dioxide diffusivity in LDPE, J. Appl. Polym. Sci. 111 (2009), pp. 380–387.
  • M. Perez-Blanco, J.R. Hammons, and R.P. Danner, Measurement of the solubility and diffusivity of blowing agents in polystyrene, J. Appl. Polym. Sci. 116 (2010), pp. 2359–2365.
  • P. Kundra, S.R. Upreti, A. Lohi, and J. Wu, Experimental determination of concentration dependence of nitrogen diffusivity in polypropylene, J. Appl. Polym. Sci. 121 (2011), pp. 2828–2834.
  • Z. Wang, T. Chen, and J. Xu, Gas transport properties of a series of cardopolyarylethers, J. Appl. Polym. Sci. 83 (2002), pp. 791–801.
  • S.U. Hong, A. Albouy, and J.L. Duda, Transport of blowing agents in polyurethane, J. Appl. Polym. Sci. 79 (2001), pp. 696–702.
  • Z.H. Chen, K. Cao, Z. Yao, and Z.M. Huanga, Modeling solubilities of subcritical and supercritical fluids in polymers with cubic and non-cubic equations of state, J. Supercrit. Fluid. 49 (2009), pp. 143–153.
  • D.C. Li, T. Liu, L. Zhao, and W.K. Yuan, Solubility and diffusivity of carbon dioxide in solid-state isotactic polypropylene by the pressure-decay method, Ind. Eng. Chem. Res. 48 (2009), pp. 7117–7124.
  • C.J. Peng, H.L. Liu, and Y. Hu, Gas solubilities in molten polymers based on an equation of state, Chem. Eng. Sci. 56 (2001), pp. 6967–6975.
  • E. Aionicesei, M. Skerget, and Z. Knez, Mathematical modeling of the solubility of supercritical CO2 in poly(l-lactide) and poly(d, l-lactide-co-glycolide), J. Supercrit. Fluid 50 (2009), pp. 320–326.
  • G. Li, H. Li, L.S. Turng, S. Gong, and C. Zhang, Measurement of gas solubility and diffusivity in polylactide, Fluid Phase Equilibr. 246 (2006), pp. 158–166.
  • G. Li, S.N. Leung, M.M. Hasan, J. Wang, C.B. Park, and R. Simha, A thermodynamic model for ternary mixture systems – gas blends in a polymer melt, Fluid Phase Equilibr. 266 (2008), pp. 129–142.
  • A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, J. Markopoulos, and O. Igglessi-Markopoulou, Prediction of intrinsic viscosity in polymer–solvent combinations using a QSPR model, Polymer 47 (2006), pp. 3240–3248.
  • R.R. Yager and D.P. Filev, Approximate clustering via the mountain method, IEEE Trans. Syst. Man Cybern. 24 (1994), pp. 1279–1284.
  • K. Nasouri, H. Bahrambeygi, A. Rabbi, A.M. Shoushtari, and A. Kaflou, Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks, J. Appl. Polym. Sci. 126 (2012), pp. 127–135.
  • A.R. Katritzky, R. Petrukhin, R. Jain, and M. Karelson, QSPR analysis of flash points, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 1521–1530.
  • A. Khajeh and H. Modarress, Quantitative structure–property relationship for surface tension of some common alcohols, J. Chemom. 25 (2011), pp. 333–339.
  • A. Khajeh and H. Modarress, Quantitative structure property relationship for flash points of alcohols, Ind. Eng. Chem. Res. 50 (2011), pp. 11337–11342.
  • A. Khajeh and H. Modarress, Quantitative structure–property relationship prediction of liquid thermal conductivity for some alcohols, Struct. Chem. 22 (2011), pp. 315–1323.
  • A. Khajeh and R. Rasaei, Diffusion coefficient prediction of acids in water at infinite dilution by QSPR method, Struct. Chem. 23 (2011), pp. 399–406.
  • A. Khajeh and H. Modarress, QSPR prediction of surface tension of refrigerants from their molecular structures, Int. J. Refrig. 35 (2012), pp. 150–159.
  • L. Naderloo, R. Alimardani, M. Omid, F. Sarmadian, P. Javadikia, M.Y. Torabi, and F. Alimardani, Application of ANFIS to predict crop yield based on different energy inputs, Measurement 45 (2012), pp. 1406–1413.
  • L. Li, S. Xie, H. Cai, X. Bai, and Z. Xue, Quantitative structure–property relationships for octanol–water partition coefficients of polybrominated diphenyl ethers, Chemosphere 72 (2008), pp. 1602–1606.
  • K. Golzar, S. Amjad-Iranagh, and H. Modarress, QSPR prediction of the solubility of CO2 and N2 in common polymers, Measurement 46 (2013), pp. 4206–4225.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, CORAL: Quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats, J. Comput. Chem. 32 (2011), pp. 2727–2733.
  • A.P. Toropova and A.A. Toropov, Quasi-QSAR for mutagenic potential of multi-walled carbon-nanotubes, Chemosphere 124 (2015), pp. 40–46.
  • A.P. Toropova and A.A. Toropov, Mutagenicity: QSAR-quasi-QSAR-nano-QSAR, Mini-Rev. Med. Chem. 15 (2015), pp. 608–621.
  • A.P. Toropova and A.A. Toropov, Quasi-SMILES and nano-QFAR: United model for mutagenicity of fullerene and MWCNT under different conditions, Chemosphere 139 (2015), pp. 18–22.
  • A.P. Toropova, A.A. Toropov, R. Rallo, D. Leszczynska, and J. Leszczynski, Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions, Ecotoxicol. Environ. Saf. 112 (2015), pp. 39–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.