149
Views
7
CrossRef citations to date
0
Altmetric
Articles

Molecular mechanism of the susceptibility difference between HLA-B*27:02/04/05 and HLA-B*27:06/09 to ankylosing spondylitis: substitution analysis, MD simulation, QSAR modelling, and in vitro assay

, , , &
Pages 409-425 | Received 14 Jan 2016, Accepted 13 Apr 2016, Published online: 26 May 2016

References

  • J. Sieper, J. Braun, M. Rudwaleit, A. Boonen, and A. Zink, Ankylosing spondylitis: An overview, Ann. Rheum. Dis. 61 (2002), pp. iii8–iii18.
  • M.A. Brown, L.G. Kennedy, A.J. MacGregor, C. Darke, E. Duncan, J.L. Shatford, A. Taylor, A. Calin, and P. Wordsworth, Susceptibility to ankylosing spondylitis in twins: The role of genes, HLA, and the environment, Arthritis Rheum. 40 (1997), pp. 1823–1828.
  • A.P. Malaviya and A.J. Ostor, Early diagnosis crucial in ankylosing spondylitis, Practitioner 255 (2011), pp. 21–24.
  • A. Cauli, G. Dessole, M.T. Fiorillo, A. Vacca, A. Mameli, P. Bitti, G. Passiu, R. Sorrentino, and A. Mathieu, Increased level of HLA-B27 expression in ankylosing spondylitis patients compared with healthy HLA-B27-positive subjects: A possible further susceptibility factor for the development of disease, Rheumatology 41 (2002), pp. 1375–1379.
  • P. Bowness, HLA-B27, Annu. Rev. Immunol. 33 (2015), pp. 29–48.
  • J.D. Reveille, Major histocompatibility genes and ankylosing spondylitis, Best Pract. Res. Clin. Rheumatol. 20 (2006), pp. 601–609.
  • M.A. Brown, B.P. Wordsworth, and J.D. Reveille, Genetics of ankylosing spondylitis, Clin. Exp. Rheumatol. 20 (2002), pp. S43–S49.
  • J.D. Taurog, The mystery of HLA-B27: If it isn't one thing, it's another, Arthritis Rheum. 56 (2007), pp. 2478–2481.
  • N.J. Sheehan, HLA-B27: What's new?, Rheumatology 49 (2010), pp. 621–631.
  • R.E. Hammer, S.D. Maika, J.A. Richardson, J.P. Tang, and J.D. Taurog, Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: An animal model of HLA-B27-associated human disorders, Cell 63 (1990), pp. 1099–1112.
  • M. Ramos, A. Paradela, M. Vazquez, A. Marina, J. Vazquez, and J.A. Lopez de Castro, Differential association of HLA-B*2705 and B*2709 to ankylosing spondylitis correlates with limited peptide subsets but not with altered cell surface stability, J. Biol. Chem. 277 (2002), pp. 28749–28756.
  • M. Hülsmeyer, M.T. Fiorillo, F. Bettosini, R. Sorrentino, W. Saenger, A. Ziegler, and B. Uchanska-Ziegler, Dual, HLA-B27 subtype-dependent conformation of a self-peptide, J. Exp. Med. 199 (2004), pp. 271–281.
  • M.T. Fiorillo, G. Greco, M. Maragno, I. Potolicchio, A. Monizio, M.L. Dupuis, and R. Sorrentino, The naturally occurring polymorphism Asp116–>His116, differentiating the ankylosing spondylitis-associated HLA-B*2705 from the non-associated HLA-B*2709 subtype, influences peptide-specific CD8 T cell recognition, Eur. J. Immunol. 28 (1998), pp. 2508–2516.
  • M. D'Amato, M.T. Fiorillo, C. Carcassi, A. Mathieu, A. Zuccarelli, P.P. Bitti, R. Tosi, and R. Sorrentino, Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis, Eur. J. Immunol. 25 (1995), pp. 3199–3201.
  • D. Chen, S. Liu, W. Zhang, and L. Sun, Rational design of YAP WW1 domain-binding peptides to target TGFβ/BMP/Smad-YAP interaction in heterotopic ossification, J. Pept. Sci. 21 (2015), pp. 826–832.
  • M.A. Khan, Polymorphism of HLA-B27: 105 subtypes currently known, Curr. Rheumatol. Rep. 15 (2013), p. 362.
  • B. Galocha and J.A. de Castro, Folding of HLA-B27 subtypes is determined by the global effect of polymorphic residues and shows incomplete correspondence to ankylosing spondylitis, Arthritis Rheum. 58 (2008), pp. 401–412.
  • M. D'Amato, M.T. Fiorillo, C. Carcassi, A. Mathieu, A. Zuccarelli, P.P. Bitti, R. Tosi, and R. Sorrentino, Relevance of residue 116 of HLA-B27 in determining susceptibility to ankylosing spondylitis, Eur. J. Immunol. 25 (1995), pp. 3199–3201.
  • H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T.N. Bhat, H. Weissig, I.N. Shindyalov, and P.E. Bourne, The protein data bank, Nucl. Acids Res. 28 (2000), pp. 235–242.
  • A.A. Canutescu, A.A. Shelenkov, and R.L. Dunbrack Jr, A graph-theory algorithm for rapid protein side-chain prediction, Protein Sci. 12 (2003), pp. 2001–2014.
  • B. Knapp, U. Omasits, and W. Schreiner, Side chain substitution benchmark for peptide/MHC interaction, Protein Sci. 17 (2008), pp. 977–982.
  • V.A. Walshe, C.K. Hattotuwagama, I.A. Doytchinova, and D.R. Flower, A dataset of experimental HLA-B*2705 peptide binding affinities, Dataset Pap. Sci. 2014 (2014), p. 914684.
  • P. Zhou, F. Tian, Y. Wu, Z. Li, and Z. Shang, Quantitative sequence-activity model (QSAM): Applying QSAR strategy to model and predict bioactivity and function of peptides, proteins and nucleic acids, Curr. Comput. Aided Drug Des. 4 (2008), pp. 311–321.
  • S. Hellberg, M. Sjoestroem, B. Skagerberg, and S. Wold, Peptide quantitative structure-activity relationships, a multivariate approach, J. Med. Chem. 30 (1987), pp. 1126–1135.
  • A. Zaliani and E. Gancia, MS-WHIM scores for amino acids, a new 3D-description for peptide QSAR and QSPR studies, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 525–533.
  • H. Mei, Z.H. Liao, Y. Zhou, and S.Z. Li, A new set of amino acid descriptors and its application in peptide QSARs, Biopolymers 80 (2005), pp. 775–786.
  • F. Tian, P. Zhou, and Z. Li, T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides, J. Mol. Struct. 830 (2007), pp. 106–115.
  • F. Tian, L. Yang, F. Lv, Q. Yang, and P. Zhou, In silico quantitative prediction of peptides binding affinity to human MHC molecule: An intuitive quantitative structure-activity relationship approach, Amino Acids 36 (2009), pp. 535–554.
  • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995), pp. 273–297.
  • C.C. Chang and C.J. Lin, LIBSVM: A library for support vector machines, ACM Transact. Intel. Syst. Technol. 2 (2011), pp. 1–27.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • J.H. Wang, Y.L. Liu, J.H. Ning, J. Yu, X.H. Li, and F.X. Wang, Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities?, J. Mol. Struct. 2013 (1040), pp. 164–170.
  • Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, and P. Kollman, A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations, J. Comput. Chem. 24 (2003), pp. 1999–2012.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935.
  • T. Darden, D. York, and L. Pedersen, Particle mesh Ewald: An N.log(N) method for Ewald sums in large systems, Chem. Phys. 98 (1993), pp. 10089–10092.
  • J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes, J. Comput. Phys. 23 (1977), pp. 327–341.
  • N. Homeyer and H. Gohlke, Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method, Mol. Inf. 31 (2012), pp. 114–122.
  • D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz Jr, A. Onufriev, C. Simmerling, B. Wang, and R.J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem. 26 (2005), pp. 1668–1688.
  • T. Hou, K. Chen, W.A. McLaughlin, B. Lu, and W. Wang, Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain, PLoS Comput. Biol. 2 (2006), p. e1.
  • I.A. Doytchinova, V.A. Walshe, N.A. Jones, S.E. Gloster, P. Borrow, and D.R. Flower, Coupling in silico and in vitro analysis of peptide-MHC binding: A bioinformatic approach enabling prediction of superbinding peptides and anchorless epitopes, J. Immunol. 172 (2004), pp. 7495–7502.
  • J. Robinson, J.A. Halliwell, H. McWilliam, R. Lopez, P. Parham, and S.G. Marsh, The IMGT/HLA database, Nucleic Acids Res. 41 (2013), pp. D1222–D1227.
  • N.P. Brown, C. Leroy, and C. Sander, MView: A web-compatible database search or multiple alignment viewer, Bioinformatics 14 (1998), pp. 380–381.
  • M. García-Peydró, M. Martí, and J.A. López de Castro, High T cell epitope sharing between two HLA-B27 subtypes (B*2705 and B*2709) differentially associated to ankylosing spondylitis, J. Immunol. 163 (1999), pp. 2299–2305.
  • B. Galocha, J.R. Lamas, J.A. Villadangos, J.P. Albar, and J.A. López de Castro, Binding of peptides naturally presented by HLA-B27 to the differentially disease-associated B*2704 and B*2706 subtypes, and to mutants mimicking their polymorphism, Tissue Antigens 48 (1996), pp. 509–518.
  • D. Fruci, P. Rovero, G. Falasca, A. Chersi, R. Sorrentino, R. Butler, N. Tanigaki, and R. Tosi, Anchor residue motifs of HLA class-I-binding peptides analyzed by the direct binding of synthetic peptides to HLA class I alpha chains, Hum. Immunol. 38 (1993), pp. 187–192.
  • A. Ben-Hur and J. Weston, A user’s guide to support vector machines, Meth. Mol. Biol. 609 (2010), pp. 223–239.
  • P. Zhou, F. Tian, F. Lv, and Z. Shang, Comprehensive comparison of eight statistical modelling methods used in quantitative structure-retention relationship studies for liquid chromatographic retention times of peptides generated by protease digestion of the Escherichia coli proteome, J. Chromatogr. A 1216 (2009), pp. 3107–3116.
  • P. Atagunduz, H. Appel, W. Kuon, P. Wu, A. Thiel, P.M. Kloetzel, and J. Sieper, HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis, Arthritis Rheum. 52 (2005), pp. 892–901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.