289
Views
12
CrossRef citations to date
0
Altmetric
Articles

3D-QSAR and molecular docking study of LRRK2 kinase inhibitors by CoMFA and CoMSIA methods

&
Pages 385-407 | Received 02 Jan 2016, Accepted 11 Apr 2016, Published online: 26 May 2016

References

  • I. Mata, J. Kachergus, J. Taylor, S. Lincoln, J. Aasly, T. Lynch, M. Hulihan, S. Cobb, R.-M. Wu, C.-S. Lu, C. Lahoz, Z. Wszolek, and M. Farrer, Lrrk2 pathogenic substitutions in Parkinson's disease, Neurogenetics 6 (2005), pp. 171–177.
  • A. Zimprich, S. Biskup, P. Leitner, P. Lichtner, M. Farrer, S. Lincoln, J. Kachergus, M. Hulihan, R.J. Uitti, D.B. Calne, A.J. Stoessl, R.F. Pfeiffer, N. Patenge, I.C. Carbajal, P. Vieregge, F. Asmus, B. Müller-Myhsok, D.W. Dickson, T. Meitinger, T.M. Strom, Z.K. Wszolek, and T. Gasser, Mutations in LRRK2 cause autosomal-dominant Parkinsonism with pleomorphic pathology, Neuroon 44 (2004), pp. 601–607.
  • J. Simón-Sánchez, V. Herranz-Pérez, F. Olucha-Bordonau, and J. Pérez-Tur, LRRK2 is expressed in areas affected by Parkinson's disease in the adult mouse brain, Eur. J. Neurosci. 23 (2006), pp. 659–666.
  • C. Paisán-Ruíz, S. Jain, E.W. Evans, W.P. Gilks, J. Simón, M. van der Brug, A.L. de Munain, and S. Aparicio, A.M.n. Gil, N. Khan, J. Johnson, J.R. Martinez, D. Nicholl, I.M. Carrera, A.S. PeHa, R. de Silva, A. Lees, J.F. Martí-Massó, J. Pérez-Tur, N.W. Wood, and A.B. Singleton, Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease, Neuron 44 (2004), pp. 595–600.
  • C. Paisán-Ruíz, P. Nath, N. Washecka, J.R. Gibbs, and A.B. Singleton, Comprehensive analysis of LRRK2 in publicly available Parkinson's disease cases and neurologically normal controls, Hum. Mutat. 29 (2008), pp. 485–490.
  • M.H. Polymeropoulos, C. Lavedan, E. Leroy, S.E. Ide, A. Dehejia, A. Dutra, B. Pike, H. Root, J. Rubenstein, R. Boyer, E.S. Stenroos, S. Chandrasekharappa, A. Athanassiadou, T. Papapetropoulos, W.G. Johnson, A.M. Lazzarini, R.C. Duvoisin, G. Di Iorio, L.I. Golbe, and R.L. Nussbaum, Mutation in the α-synuclein gene identified in families with Parkinson's disease, Science 276 (1997), pp. 2045–2047.
  • O.A. Ross, M. Toft, A.J. Whittle, J.L. Johnson, S. Papapetropoulos, D.C. Mash, I. Litvan, M.F. Gordon, Z.K. Wszolek, M.J. Farrer, and D.W. Dickson, Lrrk2 and Lewy body disease, Annals Neurol. 59 (2006), pp. 388–393.
  • H. Chen, B.K. Chan, J. Drummond, A.A. Estrada, J. Gunzner-Toste, X. Liu, Y. Liu, J. Moffat, D. Shore, Z.K. Sweeney, T. Tran, S. Wang, G. Zhao, H. Zhu, and D.J. Burdick, Discovery of selective LRRK2 inhibitors guided by computational analysis and molecular modeling, J. Med. Chem. 55 (2012), pp. 5536–5545.
  • L. Wang, C. Xie, E. Greggio, L. Parisiadou, H. Shim, L. Sun, J. Chandran, X. Lin, C. Lai, W.-J. Yang, D.J. Moore, T.M. Dawson, V.L. Dawson, G. Chiosis, M.R. Cookson, and H. Cai, The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2, J. Neurosci. 28 (2008), pp. 3384–3391.
  • A.W. Garofalo, M. Adler, D.L. Aubele, S. Bowers, M. Franzini, E. Goldbach, C. Lorentzen, R.J. Neitz, G.D. Probst, K.P. Quinn, P. Santiago, H.L. Sham, D. Tam, A.P. Truong, X.M. Ye, and Z. Ren, Novel cinnoline-based inhibitors of LRRK2 kinase activity, Bioorg. Med. Chem. Lett. 23 (2013), pp. 71–74.
  • A.W. Garofalo, M. Adler, D.L. Aubele, E.F. Brigham, D. Chian, M. Franzini, E. Goldbach, G.T. Kwong, R. Motter, G.D. Probst, K.P. Quinn, L. Ruslim, H.L. Sham, D. Tam, P. Tanaka, A.P. Truong, X.M. Ye, and Z. Ren, Discovery of 4-alkylamino-7-aryl-3-cyanoquinoline LRRK2 kinase inhibitors, Bioorg. Med. Chem. Lett. 23 (2013), pp. 1974–1977.
  • M. Liu, S. Poulose, E. Schuman, A.D. Zaitsev, B. Dobson, K. Auerbach, K. Seyb, G.D. Cuny, M.A. Glicksman, R.L. Stein, and Z. Yue, Development of a mechanism-based high-throughput screen assay for leucine-rich repeat kinase 2-Discovery of LRRK2 inhibitors, Anal. Biochem. 404 (2010), pp. 186–192.
  • A.D. Reith, P. Bamborough, K. Jandu, D. Andreotti, L. Mensah, P. Dossang, H.G. Choi, X. Deng, J. Zhang, D.R. Alessi, and N.S. Gray, GSK2578215A; A potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor, Bioorg. Med. Chem. Lett. 22 (2012), pp. 5625–5629.
  • T. Troxler, P. Greenidge, K. Zimmermann, S. Desrayaud, P. Drückes, T. Schweizer, D. Stauffer, G. Rovelli, and D.R. Shimshek, Discovery of novel indolinone-based, potent, selective and brain penetrant inhibitors of LRRK2, Bioorg. Med. Chem. Lett. 23 (2013), pp. 4085–4090.
  • J. Zhang, X. Deng, H.G. Choi, D.R. Alessi, and N.S. Gray, Characterization of TAE684 as a potent LRRK2 kinase inhibitor, Bioorg. Med. Chem. Lett. 22 (2012), pp. 1864–1869.
  • W.W. Smith, Z. Pei, H. Jiang, D.J. Moore, Y. Liang, A.B. West, V.L. Dawson, T.M. Dawson, and C.A. Ross, Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration, Proc. Nat.l Acad. Sci. U.S.A. 102 (2005), pp. 18676–18681.
  • M. Franzini, X.M. Ye, M. Adler, D.L. Aubele, A.W. Garofalo, S. Gauby, E. Goldbach, G.D. Probst, K.P. Quinn, P. Santiago, H.L. Sham, D. Tam, A. Truong, and Z. Ren, Triazolopyridazine LRRK2 kinase inhibitors, Bioorg. Med. Chem. Lett. 23 (2013), pp. 1967–1973.
  • E. Pourbasheer, R. Aalizadeh, M.R. Ganjali, P. Norouzi, J. Shadmanesh, and C. Methenitis, QSAR study of Nav1.7 antagonists by multiple linear regression method based on genetic algorithm (GA-MLR), Med. Chem. Res. 23 (2014), pp. 2264–2276.
  • E. Pourbasheer, R. Aalizadeh, M.R. Ganjali, P. Norouzi, and A. Banaei, QSAR study of mGlu5 inhibitors by genetic algorithm-multiple linear regressions, Med. Chem. Res. 23 (2014), pp. 3082–3091.
  • E. Pourbasheer, R. Aalizadeh, M.R. Ganjali, and P. Norouzi, QSAR study of IKKβ inhibitors by the genetic algorithm: Multiple linear regressions, Med. Chem. Res. 23 (2014), pp. 57–66.
  • E. Pourbasheer, R. Aalizadeh, M.R. Ganjali, and P. Norouzi, QSAR study of α1β4 integrin inhibitors by GA-MLR and GA-SVM methods, Struct. Chem. 25 (2014), pp. 355–370.
  • E. Pourbasheer, A. Beheshti, H. Khajehsharifi, M.R. Ganjali, and P. Norouzi, QSAR study on hERG inhibitory effect of kappa opioid receptor antagonists by linear and non-linear methods, Med. Chem. Res. 22 (2013), pp. 4047–4058.
  • L. Firoozpour, K. Sadatnezhad, S. Dehghani, E. Pourbasheer, A. Foroumadi, A. Shafiee, and M. Amanlou, An efficient piecewise linear model for predicting activity of caspase-3 inhibitors, DARU, J. Pharm. Sci. 20 (2012), pp. 1–6.
  • S. Yousefinejad, and B. Hemmateenejad, Chemometrics tools in QSAR/QSPR studies: A historical perspective, Chemometr. Intell. Lab. Sys. 149 (2015), pp. 177–204.
  • E. Pourbasheer, and S. Shokouhi, Tabar, V.H. Masand, R. Aalizadeh, and M.R. Ganjali, 3D-QSAR and docking studies on adenosine A2A receptor antagonists by the CoMFA method, SAR QSAR Environ. Res. 26 (2015), pp. 461–477.
  • E. Pourbasheer, R. Bazl, and M. Amanlou, Molecular docking and 3D-QSAR studies on the MAPKAP-K2 inhibitors, Med. Chem. Res. 23 (2014), pp. 2252–2263.
  • E. Pourbasheer and M. Amanlou, 3D-QSAR analysis of anti-cancer agents by CoMFA and CoMSIA, Med. Chem. Res. 23 (2014), pp. 800–809.
  • E. Pourbasheer, R. Aalizadeh, S. Shokouhi Tabar, M.R. Ganjali, P. Norouzi, and J. Shadmanesh, 2D and 3D-QSAR study of Hepatitis C Virus NS5B polymerase inhibitors by CoMFA and CoMSIA methods, J. Chem. Inf. Model. 54 (2014), pp. 2902–2914.
  • R.D. Cramer, D.E. Patterson, and J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc. 110 (1988), pp. 5959–5967.
  • G. Klebe, U. Abraham, and T. Mietzner, Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, J. Med. Chem. 37 (1994), pp. 4130–4146.
  • P. Galatsis, J.L. Henderson, B.L. Kormos, S. Han, R.G. Kurumbail, T.T. Wager, P.R. Verhoest, G.S. Noell, Y. Chen, E. Needle, Z. Berger, S.J. Steyn, C. Houle, and W.D. Hirst, Kinase domain inhibition of leucine rich repeat kinase 2 (LRRK2) using a [1,2,4]triazolo[4,3-b]pyridazine scaffold, Bioorg Med Chem Lett. 24 (2014), pp. 4132–4140.
  • A.K. Jain, Data clustering: 50 years beyond K-means, Pattern Recogn. Lett. 31 (2010), pp. 651–666.
  • J.A. Hartigan, Clustering Algorithms, John Wiley & Sons, Inc., 1975.
  • A.K. Jain, M.N. Murty, and P.J. Flynn, Data clustering: A review, ACM Comput. Surv. 31 (1999), pp. 264–323.
  • H.T. Manual, SYBYL 7.3, Tripos International, St. Louis, Missouri, USA, 2006.
  • J. Gasteiger, and M. Marsili, Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges, Tetrahedron 36 (1980), pp. 3219–3228.
  • M. Clark, R.D. Cramer, and N. Van Opdenbosch, Validation of the general purpose tripos 5.2 force field, J. Comput. Chem. 10 (1989), pp. 982–1012.
  • R. Aalizadeh, E. Pourbasheer, and M.R. Ganjali, Analysis of B-RafV600E inhibitors using 2D and 3D-QSAR, molecular docking and pharmacophore studies, Mol. Divers. 19 (2015), pp. 915–930.
  • E. Pourbasheer, R. Aalizadeh, H.M. Shiri, A. Banaei, and M.R. Ganjali, 2D and 3D-QSAR analysis of pyrazole-thiazolinone derivatives as EGFR kinase inhibitors by CoMFA and CoMSIA, Curr. Comput. Aided Drug Des. 11 (2016), pp. 292–303.
  • G. Folkers, A. Merz, and D. Rognan, Theory methods and applications, in 3D-QSAR in Drug Design, H. Kubinyi, ed., ESCOM, Leiden, the Netherlands, 1994, pp. 583–618.
  • V.N. Viswanadhan, A.K. Ghose, G.R. Revankar, and R.K. Robins, Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics, J. Chem. Inf. Comput. Sci. 29 (1989), pp. 163–172.
  • S. Wold, A. Ruhe, H. Wold, and I. Dunn, The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses, SIAM J. Sci. Comput. 5 (1984), pp. 735–743.
  • B. Bush, and R. Nachbar Jr, Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA, J. Computer-Aided Mol. Des. 7 (1993), pp. 587–619.
  • Y.C. Martin, and P. Willett, Designing Bioactive Molecules: Three-Dimensional Techniques and Applications, American Chemical Society, Washington DC, 1998.
  • R. Wehrens, H. Putter, and L.M.C. Buydens, The bootstrap: A tutorial, Chemometr. Intell. Lab. Syst. 54 (2000), pp. 35–52.
  • K. Roy, P. Chakraborty, I. Mitra, P.K. Ojha, S. Kar, and R.N. Das, Some case studies on application of “rm2” metrics for judging quality of quantitative structure–activity relationship predictions: Emphasis on scaling of response data, J. Comput. Chem. 34 (2013), pp. 1071–1082.
  • A. Golbraikh, and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • N. Chirico, and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335.
  • N. Chirico, and P. Gramatica, Real external predictivity of QSAR models. Part 2. New intercomparable thresholds for different validation criteria and the need for scatter plot inspection, J. Chem. Inf. Model. 52 (2012), pp. 2044–2058.
  • L.I. Lin, A concordance correlation coefficient to evaluate reproducibility, Biometrics 45 (1989), pp. 255–268.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009), pp. 2785–2791.
  • U.C. Singh, and P.A. Kollman, An approach to computing electrostatic charges for molecules, J. Comput. Chem. 5 (1984), pp. 129–145.
  • G. Wolber and T. Langer, LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters, J. Chem. Inf. Model. 45 (2004), pp. 160–169.
  • L.M. Shi, H. Fang, W. Tong, J. Wu, R. Perkins, R.M. Blair, W.S. Branham, S.L. Dial, C.L. Moland, and D.M. Sheehan, QSAR models using a large diverse set of estrogens, J. Chem. Inf. Comput. Sci. 41 (2000), pp. 186–195.
  • V. Consonni, D. Ballabio, and R. Todeschini, Comments on the definition of the Q2 parameter for QSAR validation, J. Chem. Inf. Model. 49 (2009), pp. 1669–1678.
  • K.P. Singh, and S. Gupta, Nano-QSAR modeling for predicting biological activity of diverse nanomaterials, RSC Adv. 4 (2014), pp. 13215–13230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.