274
Views
22
CrossRef citations to date
0
Altmetric
Articles

Scoring multiple features to predict drug disease associations using information fusion and aggregation

, &
Pages 609-628 | Received 14 May 2016, Accepted 30 Jun 2016, Published online: 25 Jul 2016

References

  • J. Aronson, Old drugs–new uses, Br. J. Clin. Pharmacol. 64 (2007), pp. 563–565.
  • T.T. Ashburn and K.B. Thor, Drug repositioning: Identifying and developing new uses for existing drugs, Nat. Rev. Drug Discovery 3 (2004), pp. 673–683.
  • M. Hurle, L. Yang, Q. Xie, D. Rajpal, P. Sanseau, and P. Agarwal, Computational drug repositioning: From data to therapeutics, Clin. Pharmacol. Ther. 93 (2013), pp. 335–341.
  • J.T. Dudley, T. Deshpande, and A.J. Butte, Exploiting drug–disease relationships for computational drug repositioning, Briefings Bioinf. (2011), pp. 303–311.
  • G. Jin and S.T. Wong, Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines, Drug Discov. Today 19 (2014), pp. 637–644.
  • J. Li, S. Zheng, B. Chen, A.J. Butte, S.J. Swamidass, and Z. Lu, A survey of current trends in computational drug repositioning, Brief. Bioinform. 1 (2015), pp. 2–12.
  • F. Cheng, W. Li, Y. Zhou, J. Li, J. Shen, P.W. Lee, and Y. Tang, Prediction of human genes and diseases targeted by xenobiotics using predictive toxicogenomic-derived models (PTDMs), Mol. BioSyst. 9 (2013), pp. 1316–1325.
  • Y.-F. Huang, H.-Y. Yeh, and V.-W. Soo, Inferring drug-disease associations from integration of chemical, genomic and phenotype data using network propagation, BMC Med. Genomics 6 (2013), Suppl 3, S4.
  • J. Li, and Z. Lu, Pathway-based drug repositioning using causal inference, BMC Bioinf. 14 (2013), Suppl. 3, S3.
  • H. Iwata, R. Sawada, S. Mizutani, and Y. Yamanishi, Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data, J. Chem. Inf. Model. 55 (2015), pp. 446–459.
  • N. Pratanwanich and P. Lió, Pathway-based Bayesian inference of drug–disease interactions, Mol. BioSyst. 10 (2014), pp. 1538–1548.
  • C. Wu, R.C. Gudivada, B.J. Aronow, and A.G. Jegga, Computational drug repositioning through heterogeneous network clustering, BMC Syst. Biol. 7 (2013), Suppl. 5 S6.
  • J. Yang, Z. Li, X. Fan, and Y. Cheng, Drug–disease association and drug-repositioning predictions in complex diseases using causal inference–probabilistic matrix factorization, J. Chem. Inf. Model. 54 (2014), pp. 2562–2569.
  • S. Zhao and S. Li, A co-module approach for elucidating drug–disease associations and revealing their molecular basis, Bioinformatics 28 (2012), pp. 955–961.
  • G. Panagiotou and O. Taboureau, The impact of network biology in pharmacology and toxicology, SAR QSAR Environ. Res. 23 (2012), pp. 221–235.
  • O. Sidek and S. Quadri, A review of data fusion models and systems, Int. J. Imag Data Fusion 3 (2012), pp. 3–21.
  • F. Castanedo, A review of data fusion techniques, Sci. World J. 2013 (2013).
  • X.L. Dong, E. Gabrilovich, G. Heitz, W. Horn, K. Murphy, S. Sun, and W. Zhang, From data fusion to knowledge fusion, Proc. VLDB Endowment. 7 (2014), pp. 881–892.
  • T. Lange and J.M. Buhmann, Fusion of similarity data in clustering, NIPS Conference, Citeseer, 2005.
  • M. Re, Comparing early and late data fusion methods for gene expression prediction, Soft Comput. 15 (2011), pp. 1497–1504.
  • M. Zitnik and B. Zupan, Data fusion by matrix factorization, IEEE Trans. Pattern Anal. Mach. Intell. 37 (2015), pp. 41–53.
  • A. Gottlieb, G.Y. Stein, E. Ruppin, and R. Sharan, PREDICT: A method for inferring novel drug indications with application to personalized medicine, Mol. Syst. Biol. 7 (2011), p. 496.
  • Y. Wang, S. Chen, N. Deng, and Y. Wang, Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data, PLoS ONE 8 (2013).
  • D.S. Wishart, C. Knox, A.C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, and M. Hassanali, DrugBank: A knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res. 36 (2008), pp. D901–D906.
  • A. Hamosh, A.F. Scott, J.S. Amberger, C.A. Bocchini, and V.A. McKusick, Online Mendelian inheritance in man (OMIM), A knowledgebase of human genes and genetic disorders, Nucleic Acids Res. 33 (2005), pp. D514–D517.
  • D. Weininger, SMILES, A chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comp. Sci. 28 (1988), pp. 31–36.
  • C. Steinbeck, C. Hoppe, S. Kuhn, M. Floris, R. Guha, and E.L. Willighagen, Recent developments of the chemistry development kit (CDK)—An open-source Java library for chemo- and bioinformatics, Curr. Pharm. Des. 12 (2006), pp. 2111–2120.
  • M. Kuhn, M. Campillos, I. Letunic, L.J. Jensen, and P. Bork, A side effect resource to capture phenotypic effects of drugs, Mol. Syst. Biol. 6 (2010), p. 343.
  • P. Resnik, Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language, J. Artif. Intell. Res. 11 (1999), pp. 95–130.
  • K. Ovaska, M. Laakso, and S. Hautaniemi, Fast gene ontology based clustering for microarray experiments, BioData Min. 1 (2008), p. 11.
  • L. Perlman, A. Gottlieb, N. Atias, E. Ruppin, and R. Sharan, Combining drug and gene similarity measures for drug-target elucidation, J. Comput. Biol. 18 (2011), pp. 133–145.
  • K. Bleakley and Y. Yamanishi, Supervised prediction of drug–target interactions using bipartite local models, Bioinformatics 25 (2009), pp. 2397–2403.
  • M.A. Van Driel, J. Bruggeman, G. Vriend, H.G. Brunner, and J.A. Leunissen, A text-mining analysis of the human phenome, Eur. J. Hum. Genet. 14 (2006), pp. 535–542.
  • M. Detyniecki, Fundamentals on aggregation operators, Ph.D diss, University of California, Berkeley, 2001.
  • S. Yu, Kernel-based data fusion for machine learning: Methods and applications in bioinformatics and text mining. Ph.D. thesis, KU Leuven, 2009.
  • S. Oyama and C.D. Manning, Using feature conjunctions across examples for learning pairwise classifiers, Trans. Jpn Soc. Artif. Intell. 20 (2005), pp. 105–116.
  • J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, Cambridge, 2004.
  • J. Basilico, T. Hofmann, A joint framework for collaborative and content filtering, Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, ACM, 2004.
  • A. Ben-Hur and W.S. Noble, Kernel methods for predicting protein–protein interactions, Bioinformatics 21 (2005), pp. i38–i46.
  • M. Hue and J.P. Vert, On learning with kernels for unordered pairs, Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.
  • B.E. Boser, I.M. Guyon, and V.N. Vapnik, A training algorithm for optimal margin classifiers, Proceedings of the fifth annual workshop on Computational learning theory, ACM, 1992.
  • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995), pp. 273–297.
  • A. Vazifedoost, M. Rahgozar, B. Moshiri, M. Sadeghi, H.N. Chua, S.K. Ng, and L. Wong, Using data fusion for scoring reliability of protein–protein interactions, J. Bioinf. Comput. Biol. 12 (2014), p. 1450014.
  • R. Emilion, A. Doncescu, S. Regis, and A. Meril, Analysis of a mean operator for data fusion, EUSFLAT - LFA, 2005.
  • V. Torra, Weighted OWA operators for synthesis of information, Proceedings of the Fifth IEEE International Conference on Fuzzy systems, IEEE, 1996.
  • L.I. Kuncheva, Combining Pattern Classifiers, Methods and Algorithms. Wiley, Chichester, 2004.
  • C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), p. 27.
  • J.M. Merigó and M. Casanovas, A new Minkowski distance based on induced aggregation operators, Int. J. Comput. Intell. Syst. 4 (2011), pp. 123–133.
  • J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques, San Francisco, Elsevier, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.