355
Views
26
CrossRef citations to date
0
Altmetric
Articles

Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis

, , , , &
Pages 721-746 | Received 02 Jun 2016, Accepted 22 Aug 2016, Published online: 21 Sep 2016

References

  • E. Papa, F. Battaini, and P. Gramatica, Ranking of aquatic toxicity of esters modelled by QSAR, Chemosphere 58 (2005), pp. 559–570.
  • M.N. Moorea, M.H. Depledge, J.W. Readmana, and P. Leonard, An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management, Mutat. Res. 552 (2004), pp. 247–268.
  • J.R. Seward, G.D. Sinks, and T.W. Schultz, Reproducibility of toxicity across mode of toxic action in the Tetrahymena population growth impairment assay, Aquat. Toxicol. 53 (2001), pp. 33–47.
  • C.L. Russom, S.P. Bradbury, S.J. Broderius, D.E. Hammereister, and R.A. Drummond, Predicting modes of toxic action from chemical structure: Acute toxicity in the fathead minnow (Pimephales Promelas), Environ. Toxicol. Chem. 16 (1997), pp. 948–967.
  • T.W. Schultz, G.D. Sinks, and A.P. Bearden, QSAR in aquatic toxicology: A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri, in Comparative QSAR, J. Devillers, ed., Taylor & Francis, New York, NY, 1998, pp. 51–109.
  • H.J.M. Verhaar, C.J.V. Leeuwen, and J.L.M. Hermens, Classifying environmental pollutants part 1: Structural activity relationship for prediction of aquatic toxicity, Chemosphere 25 (1992), pp. 471–491.
  • W.H.J. Vaes, E.U. Ramos, H.J.M. Verhaar, and J.L.M. Hermens, Acute toxicity of nonpolar versus polar narcosis: Is there a difference?, Environ. Toxicol. Chem. 17 (1998), pp. 1380–1384.
  • B.I. Escher, R.I.L. Eggen, U. Schreiber, Z. Schreiber, E. Vye, B. Wisner, and R.P. Schwarzenbach, Baseline toxicity (narcotics) of organic chemicals determined by in-vitro membrane potential measurements in energy-transducing membranes, Environ. Sci. Technol. 36 (2002), pp. 1971–1979.
  • J.C. Dearden, M.T.D. Cronin, Y. Zhao, and O.A. Raevsky, QSAR studies of compounds acting by polar and non-polar narcotics: An examination of the role of polarisability, Quant. Struct. Act. Relat. 19 (2000), pp. 3–9.
  • D.W. Roberts and J.F. Costello, Mechanisms of action for general and polar narcosis: A difference in dimension, QSAR Comb. Sci. 22 (2003), pp. 226–233.
  • C.M. Auer, J.V. Nabholz, and K.P. Baetcke, Mode of action and the assessment of chemical hazards in the presence of limited data: Use of structure activity relationships (SAR) under TSCA Section 5, Environ. Health Perspect. 87 (1990), pp. 183–187.
  • S.C. Basak, G.D. Grunwald, G.E. Host, G.J. Niemi, and S.P. Bradbury, A comparative study of molecular similarity, statistical, and neural methods for predicting toxic modes of action, Environ. Toxicol. Chem. 17 (1998), pp. 1056–1064.
  • S.P. Bradbury, Predicting modes of toxic action from chemical structure: An overview, SAR QSAR Environ. Res. 2 (1994), pp. 89–104.
  • T.I. Netzeva, M. Pavan, and A.P. Worth, Review of (quantitative) structure - activity relationships for acute aquatic toxicity, QSAR Comb. Sci. 27 (2008), pp. 77–90.
  • T.W. Schultz, G.D. Sinks, and M.T.D. Cronin, Identification of mechanisms of toxic action of phenols to Tetrahymena pyriformis from molecular descriptors, in Quantitative Structure-Activity Relationships in Environmental Sciences – VII, F. Chen and G. Schüürmann, eds., SETAC Press, Pensacola, FL, 1997, pp. 329–342.
  • A.O. Aptula, T.I. Netzeva, I.V. Valkova, M.T.D. Cronin, T.W. Schultz, R. Kühne, and G. Schüürmann, Multivariate discrimination between modes of toxic action of phenols, Quant. Struct.-Act. Relat. 21 (2002), pp. 12–22.
  • G. Schüürmann, A.O. Aptula, R. Kühne, and R.-U. Ebert, Stepwise discrimination between four modes of toxic action of phenols in the Tetrahymena pyriformis assay, Chem. Res. Toxicol. 16 (2003), pp. 974–987.
  • X.J. Yao, A. Panaye, J.P. Doucet, H.F. Chen, R.S. Zhang, B.T. Fan, M.C. Liu, and Z.D. Hu, Comparative classification study of toxicity mechanisms using support vector machines and radial basis function neural networks, Anal. Chim. Acta 535 (2005), pp. 259–273.
  • U. Norinder, P. Lidén, and H. Boström, Discrimination between modes of toxic action of phenols using rule based methods, Mol. Divers. 10 (2006), pp. 207–212.
  • B. Niu, Y. Jin, W. Lu, and G. Li, Predicting toxic action mechanisms of phenols using AdaBoost Learner, Chemom. Intell. Lab. Syst. 96 (2009), pp. 43–48.
  • M. Nendza and M. MQlle, Discriminating toxicant classes by mode of action: 2. Physico-chemical descriptors, Quant. Struct.-Act. Relat. 19 (2000), pp. 581–598.
  • S. Ren and T.W. Schultz, Identifying the mechanism of aquatic toxicity of selected compounds by hydrophobicity and electrophilicity descriptors, Toxicol. Lett. 129 (2002), pp. 151–160.
  • S. Ren, Predicting three narcosis mechanisms of aquatic toxicity, Toxicol. Lett. 133 (2002), pp. 127–139.
  • S. Ren, P.D. Fraymer, and T.W. Schultz, An exploratory study of the use of multivariate techniques to determine mechanisms of toxic action, Ecotoxicol. Environ. Saf. 55 (2003), pp. 86–97.
  • P.C. Von der Ohe, R. KQhne, R.-U. Ebert, R. Altenburger, M. Liess, and G. Schüürmann, Structural alerts – a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay, Chem. Res. Toxicol. 18 (2005), pp. 536–555.
  • M. Nendza and M. Müller, Discriminating toxicant classes by mode of action: 3, Substructure indicator, SAR QSAR Environ. Res. 18 (2007), pp. 155–168.
  • P.G. Polishchuk, E.N. Muratov, A.G. Artemenko, O.G. Kolumbin, N.N. Muratov, and V.E. Kuz’min, Application of random forest approach to QSAR prediction of aquatic toxicity, J. Chem. Inf. Model. 49 (2009), pp. 2481–2488.
  • L. Michielan, L. Pireddu, M. Floris, and S. Moro, Support vector machine (SVM) as alternative tool to assign acute aquatic toxicity warning labels to chemicals, Mol. Inf. 29 (2010), pp. 51–64.
  • T.M. Martin, C.M. Grulke, D.M. Young, C.L. Russom, N.Y. Wang, C.R. Jackson, and M.G. Barron, Prediction of aquatic toxicity mode of action using linear discriminant and random forest models, J. Chem. Inf. Model. 53 (2013), pp. 2229–2239.
  • K.P. Singh, S. Gupta, A. Kumar, and D. Mohan, Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology, Chem. Res. Toxicol. 27 (2014), pp. 741–753.
  • OECD principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models. Available at http://www.oecd.org/env/ehs/risk-assessment/37849783.pdf.
  • A.R. Katritzky, V.S. Lobanov, and M. Karelson, CODESSA (COmprehensive DEscriptors for Structural and Statistical Analysis), Version 2.0, University of Florida, Gainesville, FL, 1994.
  • Talete srl, Dragon (Software for Molecular Descriptor Calculation), Version 6.0, 2013; software available at http://www.talete.mi.it/.
  • A.P. Worth and M.T.D. Cronin, The use of discriminant analysis, logistic regression and classification tree analysis in the development of classification models for human health effects, Mol. Struct. (Theochem) 622 (2003), pp. 97–111.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–76.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perspect. 111 (2003), pp. 1361–1375.
  • P. Gramatica, P. Pilutti, and E. Papa, Validated QSAR prediction of OH tropospheric degradation of VOCs: Splitting into training-test sets and consensus modeling, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 1794–1802.
  • T. Oberg, A QSAR for baseline toxicity: Validation, domain of application and prediction, Chem. Res. Toxicol. 17 (2004), pp. 1630–1637.
  • E. Papa, F. Villa, and P. Gramatica, Statistically validated QSARs based on theoretical descriptors for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow), J. Chem. Inf. Model. 45 (2005), pp. 1256–1266.
  • E. Papa and P. Gramatica, Screening of persistent organic pollutants by QSPR classification models: A comparative study, J. Mol. Graph. Model. 27 (2008), pp. 59–65.
  • B. Bhhatarai and P. Gramatica, Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals, Environ. Sci. Technol. 45 (2010), pp. 8120–8128.
  • Y.Y. Ren, B.W. Zhao, Q. Chang, and X.J. Yao, QSPR modeling of nonionic surfactant cloud points: An update, J. Colloid. Interf. Sci. 358 (2011), pp. 202–207.
  • ChemDraw (Chemical Structure Drawing Standard), Cambridge Soft Corporation, MA, USA, 1985–2003.
  • HyperChem, Release 6.0 for Windows; Hypercube, Inc. Canada, 2000.
  • I. Valkova, M. Vračko, and S.C. Basak, Modeling of structure–mutagenicity relationships: Counter propagation neural network approach using calculated structural descriptors, Anal. Chim. Acta 509 (2004), pp. 179–186.
  • Y.Y. Ren, J. Qin, H.X. Liu, X.J. Yao, and M.C. Liu, QSPR study on the melting points of a diverse set of potential ionic liquids by projection pursuit regression, QSAR Comb. Sci. 28 (2009), pp. 1237–1244.
  • Y.Y. Ren, B.W. Zhao, and X.J. Yao, Use of advanced statistical learning methods and principal component analysis in quantitative structure-genotoxicity relationship study of amines, Collect. Czech. Chem. Commun. 74 (2009), pp. 217–241.
  • J.A. Nelder and R.W.M. Wedderburn, Generalized linear models, J. R. Stat. Soc. A. Stat. 135 (1972), pp. 370–384.
  • P. McCullagh and J.A. Nelder (eds.), Generalized Linear Models, 2nd ed., Chapman & Hall/CRC, 1989.
  • J. Fox, Applied Regression analysis and Generalized Linear Models, 3rd ed., Sage Publications, Inc., 2008.
  • R.I. Kabacoff, R in Action: Data analysis and graphics with R, Manning, Shelter Island, NY, 2011.
  • A.J. Dobson and A.G. Barnett, An Introduction to Generalized Linear Models, 3rd ed., Chapman & Hall/CRC, Boca Raton, FL, 2008.
  • J.J. Faraway, Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall/CRC, Boca Raton, FL, 2006.
  • J. Fox and S. Weisberg, An R Companion to Applied Regression, 2nd ed., Sage, Thousand Oaks, CA, 2011. Available at: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.
  • D. Collett, Modelling Binary Data, 2nd ed., Chapman & Hall/CRC, London, 2003.
  • R 3.2.0; software available at http://cran.R-project.org.
  • O.G. Mekenyan and G.D. Veith, Relationships between descriptors for hydrophobicity and soft electrophilicity in predicting toxicity, SAR QSAR Environ. Res. 1 (1993), pp. 335–344.
  • V.R. Magnuson, D.K. Harriss and S.C. Basak, Topological indices based on neighborhood symmetry: Chemical and biological applications, in Studies in Physical and Theoretical Chemistry, R.B. King, ed., Elsevier, Amsterdam, The Netherlands, 1983, pp. 178–191.
  • R. Todeschini and V. Consonni (eds.), Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, Germany, 2000.
  • P.A.P. Moran, Notes on continuous stochastic phenomena, Biometrika 37 (1950), pp. 17–23.
  • J. Ferguson, The use of chemical potentials as indices of toxicity, P. Roy. Soc. Lon. 848 (1939), pp. 387–404.
  • J.W. McFarland, On the parabolic relationship between drug potency and hydrophobicity, J. Med. Chem. 13 (1970), pp. 1192–1196.
  • F. Reichenberg and P. Mayer, Two complementary sides of bioavailability: Accessibility and chemical activity of organic contaminants in sediments and soils, Environ. Toxicol. Chem. 25 (2006), pp. 1239–1245.
  • D.T. Stanton and P.C. Jurs, Development and use of charged partial surface area structural descriptors in computer-assisted quantitative structure–property relationship studies, Anal. Chem. 62 (1990), pp. 2323–2329.
  • D. Butina, Performance of Kier-Hall E-state descriptors in quantitative structure activity relationship (QSAR) studies of multifunctional molecules, Molecules 9 (2004), pp. 1004–1009.
  • P. Labute, A widely applicable set of descriptors, J. Mol. Graph. Model. 18 (2000), pp. 464–477.
  • A.M. Richard, Commercial toxicology prediction systems: A regulatory perspective, Toxicol. Lett. 102–103 (1998), pp. 611–616.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.