311
Views
6
CrossRef citations to date
0
Altmetric
Articles

Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA

, , &
Pages 747-780 | Received 05 Jun 2016, Accepted 02 Sep 2016, Published online: 26 Sep 2016

References

  • M. Pesic, J. Bankovic, and N. Tanic, Targeted anti-cancer therapy, acquiring and overcoming multi-drug resistance, in Frontiers in Anti-Cancer Drug Discovery, Atta-ur-Rahman and M. I. Choudhary, eds., Bentham Science, Sharjah, 2014, pp. 109–150.
  • H. Nikaido, Multidrug resistance in bacteria, Annu. Rev. Biochem. 78 (2009), pp. 119–146.
  • H. Nikaido and J.M. Pages, Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria, FEMS Microbiol. Rev. 36 (2012), pp. 340–363.
  • C. Avendaño and J.C. Menéndez, Drugs that modulate resistance to antitumor agents, in Medicinal Chemistry of Anticancer Drugs, C. Avendaño and J.C. Menéndez, eds., Elsevier, Amsterdam, 2008, pp. 387–416.
  • B. Marquez, Bacterial efflux systems and efflux pumps inhibitors, Biochimie 87 (2005), pp. 1137–1147.
  • P. Ughachukwu and P. Unekwe, Efflux pump-mediated resistance in chemotherapy, Ann. Med. Health Sci. Res. 2 (2012), pp. 191–198.
  • J. Sun, Z. Deng, and A. Yan, Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations, Biochem. Biophys. Res. Commun. 453 (2014), pp. 254–267.
  • K. Dano, Active outward transport of daunomycin in resistant Ehrlich ascites tumor cells, Biochim. Biophys. Acta 323 (1973), pp. 466–483.
  • C. Cordon-Cardo, J.P. O'Brien, J. Boccia, D. Casals, J.R. Bertino, and M.R. Melamed, Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues, J. Histochem. Cytochem. 38 (1990), pp. 1277–1287.
  • A.W. Abu-Qare, E. Elmasry, and M.B. Abou-Donia, A role for P-glycoprotein in environmental toxicology, J. Toxicol. Environ. Health B Crit. Rev. 6 (2003), pp. 279–288.
  • G. Lehne, P-glycoprotein as a drug target in the treatment of multidrug resistant cancer, Curr. Drug Targets 1 (2000), pp. 85–99.
  • J.H. Lin and M. Yamazaki, Role of P-glycoprotein in pharmacokinetics: Clinical implications, Clin. Pharmacokinet. 42 (2003), pp. 59–98.
  • M.F. Fromm, Importance of P-glycoprotein for drug disposition in humans, Eur. J. Clin. Invest. 33(Suppl 2) (2003), pp. 6–9.
  • S. Eberl, B. Renner, A. Neubert, M. Reisig, I. Bachmakov, J. Konig, F. Dorje, T.E. Murdter, A. Ackermann, H. Dormann, K.G. Gassmann, E.G. Hahn, S. Zierhut, K. Brune, and M.F. Fromm, Role of p-glycoprotein inhibition for drug interactions: Evidence from in vitro and pharmacoepidemiological studies, Clin. Pharmacokinet. 46 (2007), pp. 1039–1049.
  • C. Kourtesi, A.R. Ball, Y.Y. Huang, S.M. Jachak, D.M. Vera, P. Khondkar, S. Gibbons, M.R. Hamblin, and G.P. Tegos, Microbial efflux systems and inhibitors: Approaches to drug discovery and the challenge of clinical implementation, Open Microbiol. J. 7 (2013), pp. 34–52.
  • G.W. Kaatz and S.M. Seo, Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus, Antimicrob. Agents Chemother. 41 (1997), pp. 2733–2737.
  • S.S. Costa, M. Viveiros, L. Amaral, and I. Couto, Multidrug efflux pumps in Staphylococcus aureus: An update, Open Microbiol. J. 7 (2013), pp. 59–71.
  • M. Tanaka, T. Wang, Y. Onodera, Y. Uchida, and K. Sato, Mechanism of quinolone resistance in Staphylococcus aureus, J. Infect. Chemother. 6 (2000), pp. 131–139.
  • C. Kosmidis, B.D. Schindler, P.L. Jacinto, D. Patel, K. Bains, S.M. Seo, and G.W. Kaatz, Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus, Int. J. Antimicrob. Agents 40 (2012), pp. 204–209.
  • J.R. Aeschlimann, L.D. Dresser, G.W. Kaatz, and M.J. Rybak, Effects of NorA inhibitors on in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus, Antimicrob. Agents Chemother. 43 (1999), pp. 335–340.
  • J. Handzlik, A. Matys, and K. Kieć-Kononowicz, Recent advances in multi-drug resistance (MDR) efflux pump inhibitors of gram-positive bacteria S. aureus, Antibiotics 2 (2013), pp. 28–45.
  • K.M.R. Srivalli and P.K. Lakshmi, Overview of P-glycoprotein inhibitors: A rational outlook, Braz. J. Pharm. Sci. 48 (2012), pp. 353–367.
  • G.W. Kaatz, Inhibition of bacterial efflux pumps: A new strategy to combat increasing antimicrobial agent resistance, Expert Opin. Emerg. Drugs 7 (2002), pp. 223–233.
  • T. Ozben, Mechanisms and strategies to overcome multiple drug resistance in cancer, FEBS Lett. 580 (2006), pp. 2903–2909.
  • L. Zhang and S. Ma, Efflux pump inhibitors: A strategy to combat P-glycoprotein and the NorA multidrug resistance pump, ChemMedChem 5 (2010), pp. 811–822.
  • K.M. Thai, T.N. Do, T.V.P. Nguyen, D.K.T. Nguyen, and T.D. Tran, QSAR studies on bacterial efflux pump inhibitors, in Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, R. Kunal, ed., IGI Global, Hershey, PA, USA, 2015, pp. 238–268.
  • A. Palmeira, E. Sousa, M.H. Vasconcelos, and M.M. Pinto, Three decades of P-gp inhibitors: Skimming through several generations and scaffolds, Curr. Med. Chem. 19 (2012), pp. 1946–2025.
  • G. Szakacs, J.K. Paterson, J.A. Ludwig, C. Booth-Genthe, and M.M. Gottesman, Targeting multidrug resistance in cancer, Nat. Rev. Drug Discov. 5 (2006), pp. 219–234.
  • A. Saneja, V. Khare, N. Alam, R.D. Dubey, and P.N. Gupta, Advances in P-glycoprotein-based approaches for delivering anticancer drugs: Pharmacokinetic perspective and clinical relevance, Expert Opin. Drug Deliv. 11 (2014), pp. 121–138.
  • A. Saneja, R.D. Dubey, N. Alam, V. Khare, and P.N. Gupta, Co-formulation of P-glycoprotein substrate and inhibitor in nanocarriers: An emerging strategy for cancer chemotherapy, Curr. Cancer Drug Targets 14 (2014), pp. 419–433.
  • R. Callaghan, F. Luk, and M. Bebawy, Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy?, Drug Metab. Dispos. 42 (2014), pp. 623–631.
  • R.K. Oldham, W.K. Reid, H.D. Preisler, and D. Barnett, A phase I and pharmacokinetic study of CBT-1 as a multidrug resistance modulator in the treatment of patients with advanced cancer, Cancer Biother. Radiopharm. 13 (1998), pp. 71–80.
  • R.K. Oldham, W.K. Reid, and D. Barnett, Phase I study of CBT-1 and taxol in patients with taxol resistant cancers, Cancer Biother. Radiopharm. 15 (2000), pp. 153–159.
  • R.J. Kelly, R.W. Robey, C.C. Chen, D. Draper, V. Luchenko, D. Barnett, R.K. Oldham, Z. Caluag, A.R. Frye, S.M. Steinberg, T. Fojo, and S.E. Bates, A pharmacodynamic study of the P-glycoprotein antagonist CBT-1(R) in combination with paclitaxel in solid tumors, Oncologist 17 (2012), p. 512.
  • V. Poongavanam, N. Haider, and G.F. Ecker, Fingerprint-based in silico models for the prediction of P-glycoprotein substrates and inhibitors, Bioorg. Med. Chem. 20 (2012), pp. 5388–5395.
  • L. Chen, Y. Li, Q. Zhao, H. Peng, and T. Hou, ADME evaluation in drug discovery. 10. Predictions of P-glycoprotein inhibitors using recursive partitioning and naive Bayesian classification techniques, Mol. Pharm. 8 (2011), pp. 889–900.
  • MOE 2008.10. Chemical Computing Group Inc., 1010 Sherbrooke St. W, Suite 910, Montreal, Quebec, Canada H3A 2R7; software available at http://www.chemcomp.com.
  • Z. Parveen, G. Brunhofer, I. Jabeen, T. Erker, P. Chiba, and G.F. Ecker, Synthesis, biological evaluation and 3D-QSAR studies of new chalcone derivatives as inhibitors of human P-glycoprotein, Bioorg. Med. Chem. 22 (2014), pp. 2311–2319.
  • J. Rautio, J.E. Humphreys, L.O. Webster, A. Balakrishnan, J.P. Keogh, J.R. Kunta, C.J. Serabjit-Singh, and J.W. Polli, In vitro P-glycoprotein inhibition assays for assessment of clinical drug interaction potential of new drug candidates: A recommendation for probe substrates, Drug Metab. Dispos. 34 (2006), pp. 786–792.
  • F. Broccatelli, E. Carosati, A. Neri, M. Frosini, L. Goracci, T.I. Oprea, and G. Cruciani, A novel approach for predicting P-glycoprotein (ABCB1) inhibition using molecular interaction fields, J. Med. Chem. 54 (2011), pp. 1740–1751.
  • J.P. Brincat, F. Broccatelli, S. Sabatini, M. Frosini, A. Neri, G.W. Kaatz, G. Cruciani, and E. Carosati, Ligand promiscuity between the efflux pumps human P-glycoprotein and S. aureus NorA, ACS Med. Chem. Lett. 3 (2012), pp. 248–251.
  • P. Joshi, S. Singh, A. Wani, S. Sharma, S.K. Jain, B. Singh, B.D. Gupta, N.K. Satti, S. Koul, I.A. Khan, A. Kumar, S.B. Bharate, and R.A. Vishwakarma, Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: Reversing the resistance against frontline antibacterial drugs, MedChemComm 5 (2014), pp. 1540–1547.
  • F.J. Schmitz, A.C. Fluit, M. Luckefahr, B. Engler, B. Hofmann, J. Verhoef, H.P. Heinz, U. Hadding, and M.E. Jones, The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in-vitro activities of ciprofloxacin, sparfloxacin and moxifloxacin against clinical isolates of Staphylococcus aureus, J. Antimicrob. Chemother. 42 (1998), pp. 807–810.
  • I.A. Khan, Z.M. Mirza, A. Kumar, V. Verma, and G.N. Qazi, Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus, Antimicrob. Agents Chemother. 50 (2006), pp. 810–812.
  • N.P. Kalia, P. Mahajan, R. Mehra, A. Nargotra, J.P. Sharma, S. Koul, and I.A. Khan, Capsaicin, a novel inhibitor of the NorA efflux pump, reduces the intracellular invasion of Staphylococcus aureus, J. Antimicrob. Chemother. 67 (2012), pp. 2401–2408.
  • E.Y. Ng, M. Trucksis, and D.C. Hooper, Quinolone resistance mediated by norA: Physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome, Antimicrob. Agents Chemother. 38 (1994), pp. 1345–1355.
  • I. Leitner, J. Nemeth, T. Feurstein, A. Abrahim, P. Matzneller, H. Lagler, T. Erker, O. Langer, and M. Zeitlinger, The third-generation P-glycoprotein inhibitor tariquidar may overcome bacterial multidrug resistance by increasing intracellular drug concentration, J. Antimicrob. Chemother. 66 (2011), pp. 834–839.
  • S. Gibbons, M. Oluwatuyi, and G.W. Kaatz, A novel inhibitor of multidrug efflux pumps in Staphylococcus aureus, J. Antimicrob. Chemother. 51 (2003), pp. 13–17.
  • S. Mullin, N. Mani, and T.H. Grossman, Inhibition of antibiotic efflux in bacteria by the novel multidrug resistance inhibitors biricodar (VX-710) and timcodar (VX-853), Antimicrob. Agents Chemother. 48 (2004), pp. 4171–4176.
  • A. Kumar, I.A. Khan, S. Koul, J.L. Koul, S.C. Taneja, I. Ali, F. Ali, S. Sharma, Z.M. Mirza, M. Kumar, P.L. Sangwan, P. Gupta, N. Thota, and G.N. Qazi, Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus, J. Antimicrob. Chemother. 61 (2008), pp. 1270–1276.
  • D. Dickens, A. Owen, A. Alfirevic, and M. Pirmohamed, Determination of the inhibitory potencies of p-glycoprotein inhibitors by transcellular permeability of Caco-2 cells, British Pharmacological Society Winter Meeting, 2009. Available at http://pa2online.org/abstracts/Vol7Issue4abst092P.pdf.
  • T.-D. Ngo, T.-D. Tran, M.-T. Le, and K.-M. Thai, Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and DrugBank compounds, Mol. Divers. (2016), pp. 1–17. in press doi: http://dx.doi.org/10.1007/s11030-016-9688-5
  • D.S. Wishart, C. Knox, A.C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey, DrugBank: A comprehensive resource for in silico drug discovery and exploration, Nucleic Acids Res. 34 (2006), pp. D668–D672.
  • D.S. Wishart, C. Knox, A.C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gautam, and M. Hassanali, DrugBank: A knowledgebase for drugs, drug actions and drug targets, Nucleic Acids Res. 36 (2008), pp. D901–D906.
  • C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak, V. Neveu, Y. Djoumbou, R. Eisner, A.C. Guo, and D.S. Wishart, DrugBank 3.0: A comprehensive resource for 'omics' research on drugs, Nucleic Acids Res. 39 (2011), pp. D1035–D1041.
  • V. Law, C. Knox, Y. Djoumbou, T. Jewison, A.C. Guo, Y. Liu, A. Maciejewski, D. Arndt, M. Wilson, V. Neveu, A. Tang, G. Gabriel, C. Ly, S. Adamjee, Z.T. Dame, B. Han, Y. Zhou, and D.S. Wishart, DrugBank 4.0: Shedding new light on drug metabolism, Nucleic Acids Res. 42 (2014), pp. D1091–D1097.
  • ChemBioDrawUltra 12.0. PerkinElmer, CambridgeSoft; software available at http://www.cambridgesoft.com.
  • J. Zhang and J. Huan, Comparison of chemical descriptors for protein-chemical interaction prediction, Int. J. Comput. Biosci. 1 (2010), pp. 13–21.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474.
  • M.A. Demel, A.G.K. Janecek, K.M. Thai, G.F. Ecker, and W.N. Gansterer, Predictive QSAR models for polyspecific drug targets: The importance of feature selection, Curr. Comput. Aided Drug Des. 4 (2008), pp. 91–110.
  • RapidMiner 5.3.008. Rapid-I and contributors, Stockumer Str. 475, 44227 Dortmund, Germany; software available at http://rapidminer.com.
  • M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten, The WEKA data mining software: An update, SIGKDD Explor. Newsl. 11 (2009), pp. 10–18.
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicabilty domain estimation by projection of the training set descriptor space: A review, Altern. Lab. Anim. 33 (2005), pp. 445–459.
  • OECD, Guidance Document on the Validation of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models, OECD Series on Testing and Assessment Vol. 69, OECD Publishing, Paris, 2014.
  • T.I. Netzeva, A. Worth, T. Aldenberg, R. Benigni, M.T. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D. Roberts, T. Schultz, D.W. Stanton, J.J. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. The report and recommendations of ECVAM Workshop 52, Altern. Lab. Anim. 33 (2005), pp. 155–173.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemometr. Intell. Lab. 145 (2015), pp. 22–29.
  • K. Roy and S. Kar, Importance of applicability domain of QSAR Models, in Quantitative Structure-Activity Relationships in Drug Design, Predictive Toxicology, and Risk Assessment, R. Kunal, ed., IGI Global, Hershey, PA, USA, 2015, pp. 180–211.
  • D.A. Dobchev, G.G. Pillai, and M. Karelson, In silico machine learning methods in drug development, Curr. Top. Med. Chem. 14 (2014), pp. 1913–1922.
  • Clementine 12.0. SPSS Inc., 233 South Wacker Drive, 11th Floor, Chicago, IL 60606-6307, USA; software available at http://www.spss.com.
  • I.H. Witten, E. Frank, and M.A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed., Morgan Kaufmann Series in Data Management Systems Vol. Morgan Kaufmann, Burlington, MA, 2011.
  • D.E. Rumelhart, G.E. Hinton, and J.L. McClelland, A general framework for parallel distributed processing, in Parallel distributed processing: Explorations in the microstructure of cognition, Vol. 1, E.R. David, L.M. James, and C.P.R. Group, eds., MIT Press, Cambridge, MA, 1986, pp. 45–76.
  • R. Pandya and J. Pandya, C5.0 algorithm to improved decision tree with feature selection and reduced error pruning, Int. J. Comput. Appl. 117 (2015), pp. 18–21.
  • W.J. Youden, Index for rating diagnostic tests, Cancer 3 (1950), pp. 32–35.
  • O.F. Güner and D.R. Henry, Metric for analyzing hit lists and pharmacophores, in Pharmacophore perception, development, and use in drug design, O. F. Güner, ed., 2000, pp. 195-211.
  • K.M. Thai and G.F. Ecker, Classification models for HERG inhibitors by counter-propagation neural networks, Chem. Biol. Drug Des. 72 (2008), pp. 279–289.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • S. Ounpraseuth, S.Y. Lensing, H.J. Spencer, and R.L. Kodell, Estimating misclassification error: A closer look at cross-validation based methods, BMC Res. Notes 5 (2012), p. 656.
  • P. Pratim Roy, S. Paul, I. Mitra, and K. Roy, On Two novel parameters for validation of predictive QSAR models, Molecules 14 (2009), pp. 1660–1701.
  • SPSS 20.0. IBM Corp., 1 New Orchard Road, Armonk, New York 10504-1722, United States; software available at http://www.ibm.com.
  • B. Everitt, Multidimensional scaling and correspondence analysis, in An R and S-PLUS® Companion to Multivariate Analysis, Springer, London, 2005, pp. 91–114.
  • C.G. Wermuth, C.R. Ganellin, P. Lindberg, and L.A. Mitscher, Glossary of terms used in medicinal chemistry (IUPAC recommendations 1998), Pure Appl. Chem. 70 (1998), pp. 1129–1143.
  • T. Langer, Pharmacophores in drug research, Mol. Inform. 29 (2010), pp. 470–475.
  • M. Löwer and E. Proschak, Structure-based pharmacophores for virtual screening, Mol. Inform. 30 (2011), pp. 398–404.
  • K.M. Thai, T.D. Ngo, T.D. Tran, and M.T. Le, Pharmacophore modeling for antitargets, Curr. Top. Med. Chem. 13 (2013), pp. 1002–1014.
  • A. Palmeira, E. Sousa, M.H. Vasconcelos, M. Pinto, and M.X. Fernandes, Structure and ligand-based design of P-glycoprotein inhibitors: A historical perspective, Curr. Pharm. Des. 18 (2012), pp. 4197–4214.
  • E. Dolghih, C. Bryant, A.R. Renslo, and M.P. Jacobson, Predicting binding to p-glycoprotein by flexible receptor docking, PLoS Comput. Biol. 7 (2011), p. e1002083.
  • L. Chen, Y. Li, H. Yu, L. Zhang, and T. Hou, Computational models for predicting substrates or inhibitors of P-glycoprotein, Drug Discov. Today 17 (2012), pp. 343–351.
  • S. Shityakov and C. Förster, In silico structure-based screening of versatile P-glycoprotein inhibitors using polynomial empirical scoring functions, Adv. Appl. Bioinforma. Chem. 7 (2014), pp. 1–9.
  • F. Klepsch, P. Vasanthanathan, and G.F. Ecker, Ligand and structure-based classification models for prediction of P-glycoprotein inhibitors, J. Chem. Inf. Model. 54 (2013), pp. 218–229.
  • H. Sun, A naive Bayes classifier for prediction of multidrug resistance reversal activity on the basis of atom typing, J. Med. Chem. 48 (2005), pp. 4031–4039.
  • Y.H. Wang, Y. Li, S.L. Yang, and L. Yang, Classification of substrates and inhibitors of P-glycoprotein using unsupervised machine learning approach, J. Chem. Inf. Model. 45 (2005), pp. 750–757.
  • P. Crivori, B. Reinach, D. Pezzetta, and I. Poggesi, Computational models for identifying potential P-glycoprotein substrates and inhibitors, Mol. Pharm. 3 (2006), pp. 33–44.
  • S. Rapposelli, A. Coi, M. Imbriani, and A.M. Bianucci, Development of classification models for identifying "true" P-glycoprotein (P-gp) inhibitors through inhibition, ATPase activation and monolayer efflux assays, Int. J. Mol. Sci. 13 (2012), pp. 6924–6943.
  • S. Éric, M. Kalinic, K. Ilic, and M. Zloh, Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein, SAR QSAR Environ. Res. 25 (2014), pp. 939–966.
  • K.M. Thai, N.T. Huynh, T.D. Ngo, T.T. Mai, T.H. Nguyen, and T.D. Tran, Three- and four-class classification models for P-glycoprotein inhibitors using counter-propagation neural networks, SAR QSAR Environ. Res. 26 (2015), pp. 139–163.
  • K.M. Thai, T.D. Ngo, T.V. Phan, T.D. Tran, N.V. Nguyen, T.H. Nguyen, and M.T. Le, Virtual screening for novel Staphylococcus aureus NorA efflux pump inhibitors from natural products, Med. Chem. 11 (2015), pp. 135–155.
  • R.J. Ferreira, D.J. dos Santos, M.J. Ferreira, and R.C. Guedes, Toward a better pharmacophore description of P-glycoprotein modulators, based on macrocyclic diterpenes from Euphorbia species, J. Chem. Inf. Model. 51 (2011), pp. 1315–1324.
  • I.K. Pajeva and M. Wiese, Pharmacophore model of drugs involved in P-glycoprotein multidrug resistance: Explanation of structural variety (hypothesis), J. Med. Chem. 45 (2002), pp. 5671–5686.
  • S. Ekins, R.B. Kim, B.F. Leake, A.H. Dantzig, E.G. Schuetz, L.B. Lan, K. Yasuda, R.L. Shepard, M.A. Winter, J.D. Schuetz, J.H. Wikel, and S.A. Wrighton, Three-dimensional quantitative structure–activity relationships of inhibitors of P-glycoprotein, Mol. Pharmacol. 61 (2002), pp. 964–973.
  • S. Ekins, R.B. Kim, B.F. Leake, A.H. Dantzig, E.G. Schuetz, L.B. Lan, K. Yasuda, R.L. Shepard, M.A. Winter, J.D. Schuetz, J.H. Wikel, and S.A. Wrighton, Application of three-dimensional quantitative structure–activity relationships of P-glycoprotein inhibitors and substrates, Mol. Pharmacol. 61 (2002), pp. 974–981.
  • A. Garrigues, N. Loiseau, M. Delaforge, J. Ferte, M. Garrigos, F. Andre, and S. Orlowski, Characterization of two pharmacophores on the multidrug transporter P-glycoprotein, Mol. Pharmacol. 62 (2002), pp. 1288–1298.
  • T. Langer, M. Eder, R.D. Hoffmann, P. Chiba, and G.F. Ecker, Lead identification for modulators of multidrug resistance based on in silico screening with a pharmacophoric feature model, Arch. Pharm. (Weinheim) 337 (2004), pp. 317–327.
  • F. Cortes-Selva, M. Campillo, C.P. Reyes, I.A. Jimenez, S. Castanys, I.L. Bazzocchi, L. Pardo, F. Gamarro, and A.G. Ravelo, SAR studies of dihydro-beta-agarofuran sesquiterpenes as inhibitors of the multidrug-resistance phenotype in a Leishmania tropica line overexpressing a P-glycoprotein-like transporter, J. Med. Chem. 47 (2004), pp. 576–587.
  • I. Pajeva, C. Globisch, R. Fleischer, I. Tsakovska, and M. Wiese, Molecular modeling of P-glycoprotein and related drugs, Med. Chem. Res. 14 (2005), pp. 106–117.
  • C. Chang, P.M. Bahadduri, J.E. Polli, P.W. Swaan, and S. Ekins, Rapid identification of P-glycoprotein substrates and inhibitors, Drug Metab. Dispos. 34 (2006), pp. 1976–1984.
  • C.P. Reyes, F. Munoz-Martinez, I.R. Torrecillas, C.R. Mendoza, F. Gamarro, I.L. Bazzocchi, M.J. Nunez, L. Pardo, S. Castanys, M. Campillo, and I.A. Jimenez, Biological evaluation, structure–activity relationships, and three-dimensional quantitative structure-activity relationship studies of dihydro-beta-agarofuran sesquiterpenes as modulators of P-glycoprotein-dependent multidrug resistance, J. Med. Chem. 50 (2007), pp. 4808–4817.
  • H. Zhou, S. Wu, S. Zhai, A. Liu, Y. Sun, R. Li, Y. Zhang, S. Ekins, P.W. Swaan, B. Fang, B. Zhang, and B. Yan, Design, synthesis, cytoselective toxicity, structure–activity relationships, and pharmacophore of thiazolidinone derivatives targeting drug-resistant lung cancer cells, J. Med. Chem. 51 (2008), pp. 1242–1251.
  • I.K. Pajeva, C. Globisch, and M. Wiese, Combined pharmacophore modeling, docking, and 3D QSAR studies of ABCB1 and ABCC1 transporter inhibitors, ChemMedChem 4 (2009), pp. 1883–1896.
  • A. Palmeira, F. Rodrigues, E. Sousa, M. Pinto, M.H. Vasconcelos, and M. Fernandes, Pharmacophore-based screening as a clue for the discovery of new p-glycoprotein inhibitors, in Advances in Bioinformatics, M. Rocha, F. Riverola, H. Shatkay, and J. Corchado, eds., Springer, Berlin, 2010, pp. 175–180.
  • A. Palmeira, F. Rodrigues, E. Sousa, M. Pinto, M.H. Vasconcelos, and M.X. Fernandes, New uses for old drugs: Pharmacophore-based screening for the discovery of P-glycoprotein inhibitors, Chem. Biol. Drug Des. 78 (2011), pp. 57–72.
  • M.K. Leong, H.B. Chen, and Y.H. Shih, Prediction of promiscuous p-glycoprotein inhibition using a novel machine learning scheme, PLoS One 7 (2012), p. e33829.
  • T. Dupree, Pharmacophore development and validation for inhibitors of the bacterial NorA efflux pump, Master of Science (Research) thesis, University of Wollongong, 2005.
  • C. Wandel, R.B. Kim, S. Kajiji, P. Guengerich, G.R. Wilkinson, and A.J. Wood, P-glycoprotein and cytochrome P-450 3A inhibition: Dissociation of inhibitory potencies, Cancer Res. 59 (1999), pp. 3944–3948.
  • K. Yasuda, L.B. Lan, D. Sanglard, K. Furuya, J.D. Schuetz, and E.G. Schuetz, Interaction of cytochrome P450 3A inhibitors with P-glycoprotein, J. Pharmacol. Exp. Ther. 303 (2002), pp. 323–332.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.