506
Views
16
CrossRef citations to date
0
Altmetric
Articles

Quantitative structure–permeability relationships at various pH values for neutral and amphoteric drugs and drug-like compoundsFootnote$

&
Pages 813-832 | Received 16 Jun 2016, Accepted 15 Sep 2016, Published online: 17 Oct 2016

References

  • A. Avdeef, Absorption and Drug Development: Solubility, Permeability, and Charge State, 2nd ed., Wiley, Hoboken, NJ, 2012.
  • M.B. Brennan, Drug discovery - Filtering out failures early in the game, Chem. Eng. News 78 (2000), pp. 63–73.
  • Y. Sambuy, I.D. Angelis, G. Ranaldi, M.L. Scarino, A. Stammati, and F. Zucco, The Caco-2 cell line as a model of the intestinal barrier: Influence of cell and culture-related factors on Caco-2 cell functional characteristics, Cell Biol. Toxicol. 21 (2005), pp. 1–26.
  • P. Artursson, Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells, J. Pharm. Sci. 79 (1990), pp. 476–482.
  • M. Kansy, F. Senner, and K. Gubernator, Physicochemical high throughput screening: Parallel artificial membrane permeation assay in the description of passive absorption processes, J. Med. Chem. 41 (1998), pp. 1007–1010.
  • M. Oja and U. Maran, The permeability of an artificial membrane for wide range of pH in human gastrointestinal tract: Experimental measurements and quantitative structure-activity relationship, Mol. Inf. 34 (2015), pp. 493–506.
  • M. Oja and U. Maran, QDB archive #137. QsarDB repository, 2015. http://dx.doi.org/10.15152/QDB.137.
  • M. Oja and U. Maran, Quantitative structure–permeability relationships at various pH values for acidic and basic drugs and drug-like compounds, SAR QSAR Environ. Res. 26 (2015), pp. 701–719.
  • M. Oja and U. Maran, QDB archive #166. QsarDB repository, 2015. http://dx.doi.org/10.15152/QDB.166
  • D.T. Manallack, The acid–base profile of a contemporary set of drugs: Implications for drug discovery, SAR QSAR Environ. Res. 20 (2009), pp. 611–655.
  • Wiki-pKaTM database; available at http://www.in-adme.com/wiki_pka.php.
  • R.J. Prankerd, Critical compilation of pKa values for pharmaceutical substances, in Profiles of Drug Substances, Excipients, and Related Methodology, Vol. 33, H.G. Brittain, ed., Elsevier, New York, NY, 2007, pp 36–626.
  • A. Llinàs, R.C. Glen, and J.N. Goodman, Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements?, J. Chem. Inf. Model. 48 (2008), pp. 1289–1303.
  • S.R. Wegst-Uhrich, D.A.G. Navarro, L. Zimeerman, and D.S. Aga, Assessing antibiotic sorption in soil: A literature review and new case studies on sulfonamides and macrolides, Chem. Cent. J. 8 (2014), p. 5.
  • S. Şanli, Y. Altun, N. Şanli, G. Alsancak, and J.L. Beltran, Solvent effects on pKa values of some substituted sulfonamides in acetonitrile-water binary mixtures by the UV-spectroscopy method, J. Chem. Eng. Data 54 (2009), pp. 3014–3021.
  • H. Yang, G. Li, T. An, Y. Gao, and J. Fu, Photocatalytic degradation kinetics and mechanism of environmental pharmaceuticals in aqueous suspension of TiO2: A case of sulfa drugs, Catal. Today 153 (2010), pp. 200–207.
  • N.W. Jacobsen, B. Halling-Sørensen, and F.K. Birkved, Inhibition of human aromatase complex (CYP19) by antiepileptic drugs, Toxicol. In Vitro 22 (2008), pp. 146–153.
  • SciFinder Scholar, American Chemical Society. Calculated using Advanced Chemistry Development (ACD/Labs) Software V11.02.
  • MacroModel version 9, Schrödinger, Inc., Portland, OR, USA, 2000; software available at http://www.schrodinger.com.
  • J.J.P. Stewart, MOPAC Program Package 7.0, QCPE Bloomiagton, IN, USA, 1993.
  • CODESSA PRO User’s manual, University of Florida, Gainsville, FL, USA, 2005.
  • Syracuse research corporation. Physical/chemical Property Database–(PHYSPROP), SRC Environmental Science Centre: Syracuse, NY, USA, 1994.
  • T. Cheng, Y. Zhao, X. Li, F. Lin, Y. Xu, X. Zhang, Y. Li, R. Wang, and L. Lai, Computation of octanol-water partition coefficients by guiding an additive model with knowledge, J. Chem. Inf. Model. 47 (2007), pp. 2140–2148.
  • E. Bolton, Y. Wang, P.A. Thiessen, and S.H. Bryant, PubChem: Integrated Platform of Small Molecules and Biological Activities, in Annual Reports in Computational Chemistry, Vol. 4, American Chemical Society, Washington, DC, 2008, Chapter 12 .
  • PubChem database, available at http://pubchem.ncbi.nlm.nih.gov.
  • JChem for Excel 14.7.2800.480, 2014, ChemAxon; available at http://www.chemaxon.com.
  • A.C. Atkinson, Plots, Transformation, Regression: An Introduction to Graphical Methods of Diagnostic Regression Analysis, Oxford University Press, Oxford, UK, 1985.
  • J. Jaworska, N. Nikolova-Jeliazkova, and T. Aldenberg, QSAR applicability domain estimation by projection of the training set in descriptor space: A review, ATLA 33 (2005), pp. 445–459.
  • A. Tropsha, P. Gramatica, and V.K. Gombar, The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models, QSAR Comb. Sci. 22 (2003), pp. 69–77.
  • T.I. Netzeva, A.P. Worth, T. Aldenberg, R. Benigni, M.T.D. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D.W. Roberts, T.W. Schultz, D.T. Stanton, J.J.M. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships, Altern. Lab. Anim. 33 (2005), pp. 155–173.
  • V. Ruusmann, S. Sild, and U. Maran, QSAR DataBank - an approach for the digital organization and archiving of QSAR model information, J. Cheminf. 6 (2014), p. 25.
  • V. Ruusmann, S. Sild, and U. Maran, QSAR DataBank repository: Open and linked qualitative and quantitative structure–activity relationship models, J. Cheminf. 7 (2015), p. 32.
  • QsarDB repository, available at http://qsardb.org/.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, 2nd ed., WILEY-VCH, Weinheim, Germany, 2009.
  • R.H. Rohrbaugh and P.C. Jurs, Molecular shape and the prediction of high-performance liquid chromatographic retention indexes of polycyclic aromatic hydrocarbons, Anal. Chem. 59 (1987), pp. 1048–1054.
  • U. Maran, S. Sild, I. Tulp, K. Takkis, and M. Moosus, Molecular Descriptors from Two-Dimensional Chemical Structure, in In Silico Toxicology: Principles and Applications, M.T.D. Cronin and J.C. Madden, eds., Royal Society of Chemistry, 2010, pp. 148–192.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.