192
Views
2
CrossRef citations to date
0
Altmetric
Articles

Additional synthesis on thiophene-containing trisubstituted methanes (TRSMs) as inhibitors of M. tuberculosis and 3D-QSAR studies

, , , , , , , , , , & show all
Pages 883-909 | Received 13 Jul 2016, Accepted 28 Sep 2016, Published online: 25 Nov 2016

References

  • World Health Organization, Global Tuberculosis Report, WHO/HTM/TB/2014.08, WHO Press, Geneva, Switzerland, 2014.
  • World Health Organization, Multidrug-resistant Tuberculosis (MDR-TB) Update, WHO Press, Geneva, Switzerland, 2013.
  • World Health Organisation, Tuberculosis, Fact Sheet no. 104, WHO Press, Geneva, Switzerland, 2013. Available at http://www.who.int/mediacentre/factsheets/fs104/en/index.html.
  • World Health Organisation, Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015, WHO Press, Geneva, Switzerland, 2011. Available at http://www.who.int/tb/publications/2011/mdr_report_2011.
  • A. Somoskovi, L.M. Parsons, and M. Salfinger, The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis, Respir. Res. 2 (2001), pp. 164–168.
  • S. Khasnobis, V.E. Escuyer, and D. Chatterjee, Emerging therapeutic targets in tuberculosis: Post-genomic era, Expert. Opin. Ther. Targets 6 (2002), pp. 21–40.
  • R.C. Reynolds, N. Bansal, J. Rose, J. Friedrich, W.J. Suling, and J.A. Maddry, Ethambutol–sugar hybrids as potential inhibitors of mycobacterial cell-wall biosynthesis, Carbohydr. Res. 317 (1999), pp. 164–179.
  • P.B. Jones, N.M. Parrish, T.A. Houston, A. Stapon, N.P. Bansal, and J.D. Dick, A new class of antituberculosis agents, J. Med. Chem. 43 (2000), pp. 3304–3314.
  • K.F.M. Pasqualoto and E.I. Ferreira, An approach for the rational design of new antituberculosis agents, Curr. Drug Targets 2 (2001), pp. 427–437.
  • E. Teodori, S. Dei, S. Scapecchi, and F. Gualtieri, The medicinal chemistry of multidrug resistance (MDR) reversing drugs, Il Farmaco 57 (2002), pp. 385–415.
  • T.R. Frieden, T.R. Sterling, S.S. Munsiff, C.J. Watt, and C. Dye, Tuberculosis, Lancet 362 (2003), pp. 887–899.
  • C.V. Smith, V. Sharma, and J.C. Sacchettini, TB drug discovery: Addressing issues of persistence and resistance, Tuberculosis 84 (2004), pp. 45–55.
  • K.W. Bayles, The bactericidal action of penicillin: New clues to an unsolved mystery, Trends Microbiol. 8 (2000), pp. 274–278.
  • A.H. Katz and C.E. Caufield, Structure-based design approaches to cell wall biosynthesis inhibitors, Curr. Pharm. Des. 9 (2003), pp. 857–866.
  • M. McNeil, S.J. Wallner, S.W. Hunter, and P.J. Brennan, Demonstration that the galactosyl and arabinosyl residues in the cell-wall arabinogalactan of Mycobacterium leprae and Mycobacterium tuberculosis are furanoid, Carbohydr. Res. 166 (1987), pp. 299–308.
  • R.A. Al-Qawasmeh, Y. Lee, M.Y. Cao, X. Gu, A. Vassilakos, J.A. Wright, and A. Young, Triaryl methane derivatives as antiproliferative agents, Bioorg. Med. Chem. Lett. 14 (2004), pp. 347–350.
  • S. Gemma, G. Campiani, S. Butini, G. Kukreja, S.S. Coccone, B.P. Joshi, M. Persico, V. Nacci, I. Fiorini, E. Novellino, E. Fattorusso, O. Taglialatela-Scafati, L. Savini, D. Taramelli, N. Basilico, S. Parapini, G. Morace, V. Yardley, S. Croft, M. Coletta, S. Marini, and C. Fattorusso, Clotrimazole scaffold as an innovative pharmacophore towards potent antimalarial agents: Design, synthesis, and biological and structure–activity relationship studies, J. Med. Chem. 51 (2008), pp. 1278–1294.
  • S. Gemma, G. Campiani, S. Butini, G. Kukreja, B.P. Joshi, M. Persico, B. Catalanotti, E. Novellino, E. Fattorusso, V. Nacci, L. Savini, D. Taramelli, N. Basilico, G. Morace, V. Yardley, and C. Fattorusso, Design and synthesis of potent antimalarial agents based on clotrimazole scaffold: Exploring an innovative pharmacophore, J. Med. Chem. 50 (2007), pp. 595–598.
  • V. Trivedi, P. Chand, K. Srivastava, S.K. Puri, P.R. Maulik, and U. Bandyopadhyay, Clotrimazole inhibits hemoperoxidase of Plasmodium falciparum and induces oxidative stress. Proposed antimalarial mechanism of clotrimazole, J. Biol. Chem. 280 (2005), pp. 41129–41136.
  • S. Kumar, S.K. Das, S. Dey, P. Maity, M. Guha, V. Choubey, G. Panda, and U. Bandyopadhyay, Antiplasmodial activity of [(aryl)arylsulfanylmethyl]pyridine, Antimicrob. Agents Chemother. 52 (2008), pp. 705–715.
  • M. Goyal, P. Singh, A. Alam, S.K. Das, M.S. Iqbal, S. Dey, S. Bindu, C. Pal, S.K. Das, G. Panda, and U. Bandyopadhyay, Aryl aryl methyl thio arenes prevent multidrug-resistant malaria in mouse by promoting oxidative stress in parasites, Free Radical Bio. Med. 53 (2012), pp. 129–142.
  • R. Muthyala, A.R. Katritzky, and X.A. Lan, A synthetic study on the preparation of triarylmethanes, Dyes Pigment 25 (1994), pp. 303–324.
  • L. Sanguinet, R.J. Twieg, G. Wiggers, G. Mao, K.D. Singer, and R.G. Petschek, Synthesis and spectral characterization of bisnaphthylmethyl and trinaphthylmethyl cations, Tetrahedron Lett. 46 (2005), pp. 5121–5125.
  • M. Yamato, K. Hashigaki, Y. Yasumoto, J. Sakai, R.E. Luduena, A. Banerjee, S. Tsukagoshi, T. Tashiro, and T. Tsuruo, Synthesis and antitumor activity of tropolone derivatives. Structure–activity relationships of antitumor-active tropolone and 8-hydroxyquinoline derivatives, J. Med. Chem. 30 (1987), pp. 1897–1900.
  • N. Mibu and K. Sumoto, Preparation of 2,2′-dihydroxytriphenylmethanes using metal phenolates with aromatic aldehydes, Chem. Pharm. Bull. 48 (2000), pp. 1810–1813.
  • N. Mibu, K. Yokomizo, M. Uyeda, and K. Sumoto, Synthesis and antiviral activities of some 4,4′-dihydroxytriphenylmethanes, Chem. Pharm. Bull. 51 (2003), pp. 1325–1327.
  • K.C. Santhosh, G.C. Paul, E. De Clercq, C. Pannecouque, M. Witvrouw, T.L. Loftus, J.A. Turpin, R.W. Buckheit, and M. Cushman, Correlation of anti-HIV activity with anion spacing in a series of cosalane analogues with extended polycarboxylate pharmacophores, J. Med. Chem. 44 (2001), pp. 703–714.
  • R.M. Roberts, A.M. EI-Khawaga, K.M. Sweeney, and M.F. EI-Zohry, The question of Friedel-Crafts transformylations. Acid-catalyzed reactions of aromatic aldehydes with arenes, J. Org. Chem. 52 (1987), pp. 1591–1599.
  • R. Goossens, M. Smet, and W. Dehaen, Bronsted- and Lewis acid-catalyzed cyclization giving rise to substituted anthracenes and acridines, Tetrahedron Lett. 43 (2002), pp. 6605–6608.
  • G.K.S. Prakash, C. Panja, A. Shakhmin, E. Shah, T. Mathew, and G.A. Olah, BF3-H2O catalyzed hydroxyalkylation of aromatics with aromatic aldehydes and dicarboxaldehydes: Efficient synthesis of triarylmethanes, diarylmethylbenzaldehydes, and anthracene derivatives, J. Org. Chem. 74 (2009), pp. 8659–8668.
  • D. Guzmán-Lucero, J. Guzmán, D. Likhatchev, and R. Martínez-Palou, Microwave-assisted synthesis of 4,4′-diaminotriphenylmethanes, Tetrahedron Lett. 46 (2005), pp. 1119–1122.
  • V. Nair, K.G. Abhilash, and N. Vidya, Practical synthesis of triaryl- and triheteroarylmethanes by reaction of aldehydes and activated arenes promoted by gold(III) chloride, Org. Lett. 7 (2005), pp. 5857–5859.
  • S. Podder, J. Choudhury, U.K. Roy, and S. Roy, Dual-reagent catalysis within Ir-Sn domain: Highly selective alkylation of arenes and heteroarenes with aromatic aldehydes, J. Org. Chem. 72 (2007), pp. 3100–3103.
  • Z.X. Li, Z. Duan, J.X. Kang, H.Q. Wang, L.J. Yu, and Y.J. Wu, A simple access to triarylmethane derivatives from aromatic aldehydes and electron-rich arenes catalyzed by FeCl3, Tetrahedron 64 (2008), pp. 1924–1930.
  • S. Chandrasekhar, S. Khatun, and G. Rajesh, Rapid synthesis of macrocycles from diol precursors, Tetrahedron Lett. 50 (2009), pp. 693–695.
  • J. Jaratjaroonphong, S. Sathalalai, P. Techasauvapak, and V. Reutrakul, Iodine-catalyzed Friedel-Crafts alkylation of electron-rich arenes with aldehydes: Efficient synthesis of triarylmethanes and diarylalkanes, Tetrahedron Lett. 50 (2009), pp. 6012–6015.
  • M. Kodomari, M. Nagamatsu, M. Akaike, and T. Aoyama, Convenient synthesis of triarylmethanes and 9,10-diarylanthracenes by alkylation of arenes with aromatic aldehydes using acetyl bromide and ZnBr 2/SiO2, Tetrahedron Lett. 49 (2008), pp. 2537–2540.
  • G. Panda, J.K. Mishra, V. Chaturvedi, A.K. Srivastava, R. Srivastava, and B.S. Srivastava, Diaryloxy methano phenanthrenes: A new class of antituberculosis agents, Bioorg. Med. Chem. 12 (2004), pp. 5269–5276.
  • G. Panda, A.K. Srivastava, and S. Sinha, Synthesis and antitubercular activity of 2-hydroxy-aminoalkyl derivatives of diaryloxy methano phenanthrenes, Bioorg. Med. Chem. Lett. 15 (2005), pp. 5222–5225.
  • A. Kumar, G. Panda, and M.I. Siddiqi, CoMFA and CoMSIA 3D-QSAR analysis of diaryloxy-methano-phenanthrene derivatives as anti-tubercular agents, J. Mol. Model 13 (2007), pp. 99–109.
  • G. Panda, M.K. Parai, S.K. Das, M. Sinha, V. Chaturvedi, A.K. Srivastava, Y.S. Manju, A.N. Gaikwad, and S. Sinha, Effect of substituents on diarylmethanes for antitubercular activity, Eur. J. Med. Chem. 42 (2007), pp. 410–419.
  • M.K. Parai, G. Panda, V. Chaturvedi, Y.K. Manju, and S. Sinha, Thiophene containing triarylmethanes as antitubercular agents, Bioorg. Med. Chem. Lett. 18 (2008), pp. 289–292.
  • V.K. Kashyap, R.K. Gupta, R. Shrivastava, B.S. Srivastava, R. Srivastava, M.K. Parai, P. Singh, S. Bera, and G. Panda, In vivo activity of thiophene-containing trisubstituted methanes against acute and persistent infection of non-tubercular Mycobacterium fortuitum in a murine infection model, J. Antimicrob. Chemother. 67 (2012), pp. 1188–1197.
  • M.K. Hidau, Y. Singh, S. Shahi, P. Mounika, and S.K. Singh, LC-MS/MS assay for quantification of a novel antitubercular molecule S006–830: Pharmacokinetic and plasma protein binding studies in rats, Current Pharm. Anal. 11 (2015), pp. 35–42.
  • Y. Singh, M.K. Hidau, A. Misra, H.N. Kushwaha, A. Tiwari, A.K. Sharma, and S.K. Singh, UFLC method development and validation of a novel triethylamine containing thiophene S006–830 – An antitubercular molecule and its application to pharmacokinetic and bioavailability studies in SD rats, Drug Test. Anal. 7 (2015), pp. 721–726.
  • P. Singh, S.K. Manna, A.K. Jana, T. Saha, P. Mishra, S. Bera, M.K. Parai, S. Mondal, P. Trivedi, V. Chaturvedi, and S. Singh, Thiophene containing trisubstituted methanes [TRSMs] as identified lead against Mycobacterium tuberculosis, Eur. J. Med. Chem. 95 (2015), pp. 357–368.
  • J.K. McClatchy, Susceptibility testing of mycobacteria, Lab. Med. 9 (1978), pp. 47–52.
  • T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, J. Immunol. Meth. 65 (1983), pp. 55–63.
  • SYBYL, Version 7.3, Tripos associates, St. Louis, MO, 2006.
  • M. Clark, R.D. Cramer, and N.V. Opdenbosch, Validation of the general purpose Tripos 5.2 force field, J. Comput. Chem. 10 (1989), pp. 982–1012.
  • V.N. Viswanadhan, A.K. Ghose, G.R. Revankar, and R.K. Robins, Atomic physicochemical parameters for three dimensional structure directed quantitative structure–activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics, J. Chem. Inf. Comput. Sci. 29 (1989), pp. 163–172.
  • G. Klebe, The use of composite crystal-field environments in molecular recognition and the de novo design of protein ligands, J. Mol. Biol. 237 (1994), pp. 212–235.
  • L. Eriksson, J. Jaworska, A.P. Worth, M.T.D. Cronin, R.M. McDowell, and P. Gramatica, Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs, Environ. Health Perspect. 10 (2003), pp. 1361–1375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.