201
Views
14
CrossRef citations to date
0
Altmetric
Articles

QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti

, , &
Pages 451-470 | Received 27 Mar 2017, Accepted 06 May 2017, Published online: 12 Jun 2017

References

  • M.S. Reisch, How to contain the Zika virus, C&EN 94 (2016), pp. 29–30.
  • D.J. Gubler, Dengue and dengue hemorrhagic fever, Clin. Microbiol. Rev. 11 (1998), pp. 480–496.
  • J. Devillers, L. Lagadic, O. Yamada, F. Darriet, R. Delorme, X. Deparis, J.P. Jaeg, C. Lagneau, B. Lapied, F. Quiniou, and A. Yébakima, Use of multicriteria analysis for selecting candidate insecticides for vector control, in Juvenile Hormones and Juvenoids. Modeling Biological Effects and Environmental Fate, J. Devillers, ed., CRC Press, Boca Raton, FL, 2013, pp. 341–381.
  • J. Devillers, C. Lagneau, A. Lattes, J.C. Garrigues, M.M. Clémenté, and A. Yébakima, In silico models for predicting vector control chemicals targeting Aedes aegypti, SAR QSAR Environ. Res. 25 (2014), pp. 803–835.
  • J. Devillers, A. Doucet-Panaye, and J.P. Doucet, Structure–activity relationship (SAR) modelling of mosquito larvicides, SAR QSAR Environ. Res. 26 (2015), pp. 263–278.
  • J. Devillers, A. Doucet-Panaye, and J.P. Doucet, SAR and QSAR modeling of structurally diverse juvenoids active on mosquito larvae, in Computational Design of Chemicals for the Control of Mosquitoes and their Diseases, J. Devillers, ed., CRC Press, Boca Raton, FL, 2017 (in press).
  • J. Devillers, A. Doucet-Panaye, J.P. Doucet, A. Lattes, H. Matondo, C. Lagneau, S. Estaran, M.M. Clémenté, and A. Yébakima, SAR predictions of benzoylurea chitin synthesis inhibitors active on larvae of Aedes aegypti, in Computational Design of Chemicals for the Control of Mosquitoes and their Diseases, J. Devillers, ed., CRC Press, Boca Raton, FL, 2017 (in press).
  • J. Devillers, A. Doucet-Panaye, J.P. Doucet, C. Lagneau, S. Estaran, and A. Yébakima, Predicting the toxicity of piperidines against female adults of Aedes aegypti, in Computational Design of Chemicals for the Control of Mosquitoes and their Diseases, J. Devillers, ed., CRC Press, Boca Raton, FL, 2017 (in press).
  • A.R. Katritzky, Z. Wang, S. Slavov, M. Tsikolia, D. Dobchev, N.G. Akhmedov, C. Dennis Hall, U.R. Bernier, G.G. Clark, and K.J. Linthicum, Synthesis and bioassay of improved mosquito repellents predicted from chemical structure, Proceed. Nat. Acad. Sci. USA 105 (2008), pp. 7359–7364.
  • J.W. Pridgeon, K.M. Meepagala, J.J. Becnel, G.G. Clark, R.M. Pereira, and K.J. Linthicum, Structure–activity relationships of 33 piperidines as toxicants against female adults of Aedes aegypti (Diptera: Culicidae), J. Med. Entomol. 44 (2007), pp. 263–269.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132.
  • J. Devillers, J.P. Doucet, A. Panaye, N. Marchand-Geneste, and J.M. Porcher, Structure–activity of a diverse set of androgen receptor ligands, in Endocrine Disruption Modeling, J. Devillers, ed., CRC Press, Boca Raton, FL, 2009, pp. 335–355.
  • C.W. Yap, PaDEL descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474.
  • J. Devillers, Genetic Algorithms in Molecular Modeling, Academic Press, London, 1996.
  • R.J. Leardi, R. Boggia, and M. Terrile, Genetic algorithms as a strategy for feature selection, J. Chemom. 6 (1992), pp. 267–281.
  • W. Karcher and J. Devillers, Practical Applications of Quantitative Structure-Activity Relationships (QSAR) in Environmental Chemistry and Toxicology, Kluwer Academic Publishers, Dordrecht, 1990.
  • J. Devillers, Application of QSARs in aquatic toxicology, in Computational Toxicology. Risk Assessment for Pharmaceutical and Environmental Chemicals, S. Ekins, ed., Wiley, Hoboken, NJ, 2007, pp. 651–675.
  • R. Todeschini, V. Consonni, and A. Maiocchi, The K correlation index: Theory development and its application in chemometrics, Chemom. Intell. Lab. Sys. 46 (1999), pp. 13–29.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chem. Intell. Lab. Syst. 152 (2016), pp. 18–33.
  • P. Gramatica, Principle of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • V. Consonni, D. Ballabio, and R. Todeschini, Evaluation of model predictive ability by external validation techniques, J. Chemom. 24 (2010), pp. 194–201.
  • J. Devillers, Neural Networks in QSAR and Drug Design, Academic Press, London, 1996.
  • J.P. Doucet and A. Panaye, Three-dimensional QSAR. Applications in Pharmacology and Toxicology, CRC Press, Boca Raton, FL, 2010.
  • A. Panaye, B.T. Fan, J.P. Doucet, X.J. Yao, R.S. Zhang, M.C. Liu, and Z.D. Hu, Quantitative structure–toxicity relationships (QSTRs): A comparative study of various nonlinear methods. General regression neural network, radial basis function neural network and support vector machine in predicting toxicity of nitro- and cyano- aromatics to Tetrahymena pyriformis, SAR QSAR Environ. Res. 17 (2006), pp. 75–91.
  • T.D. Ngo, T.D. Tran, M.T. Le, and K.M. Thai, Machine learning-, rule- and pharmacophore-based classification on the inhibition of P-glycoprotein and NorA, SAR QSAR Environ. Res. 27 (2016), pp. 747–780.
  • V. Drgan, Š. Župerl, M. Vračko, F. Como, and M. Novič, Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm, SAR QSAR Environ. Res. 27 (2016), pp. 501–519.
  • S. Gupta, N. Basant, D. Mohan, and K.P. Singh, Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods, SAR QSAR Environ. Res. 27 (2016), pp. 539–558.
  • G.P. Cao, M. Arooj, S. Thangapandian, C. Park, V. Arulalapperumal, Y. Kim, Y.J. Kwon, H.H. Kim, J.K. Suh, and K.W. Lee, A lazy learning-based QSAR classification study for screening potential histone deacetylase 8 (HDAC8) inhibitors, SAR QSAR Environ. Res. 26 (2015), pp. 397–420.
  • K.-M. Thai, N.T. Huynh, T.D. Ngo, T.T. Mai, T.H. Nguyen, and T.D. Tran, Three- and four-class classification models for P-glycoprotein inhibitors using counter-propagation neural networks, SAR QSAR Environ. Res. 26 (2015), pp. 139–163.
  • J. Devillers, J.P. Doucet, A. Doucet-Panaye, A. Decourtye, and P. Aupinel, Linear and non-linear QSAR modelling of juvenile hormone esterase inhibitors, SAR QSAR Environ. Res. 23 (2012), pp. 357–369.
  • E. Papa, J.P. Doucet, and A. Doucet-Panaye, Computational approaches for the prediction of the selective uptake of magnetofluorescent nanoparticules into human cells, RSC Advances 6 (2016), pp. 68806–68818.
  • E. Papa, J.P. Doucet, A. Sangion, and A. Doucet-Panaye, Investigation of the influence of protein corona composition on gold nanoparticle bioactivity using machine learning approaches, SAR QSAR Environ. Res. 27 (2016), pp. 521–538.
  • E. Papa, J.P. Doucet, and A. Doucet-Panaye, Linear and nonlinear modelling of the cyrotoxicity of TiO2 and ZnO nanoparticles by empirical descriptors, SAR QSAR Environ. Res. 26 (2015), pp. 647–665.
  • D.A. Winkler, F.R. Burden, B. Yan, R. Weissieder, C. Tassa, S. Shaw, and V.C. Epa, Modelling and predicting the biological effects of nanomaterials, SAR QSAR Environ. Res. 25 (2014), pp. 161–172.
  • A.P. Toropova, A.A. Toropov, E. Benfenati, T. Puzyn, D. Leszczynska, and J. Leszczynski, Optimal descriptor as a translator of eclectic information into the prediction of membrane damage: The case of a group of ZnO and TiO2 nanoparticles, Ecotoxicol. Environ. Safe. 108 (2014), pp. 203–209.
  • J.H. Friedman and W. Stuetzle, Projection pursuit regression, J. Am. Stats. Assoc. 76 (1981), pp. 817–823.
  • V.N. Vapnik, The Nature of Statistical Learning Theory, Springer, New York, 1995.
  • B. Walczak and D.L. Massart, Local modelling with radial basis function networks, Chemom. Intell. Lab. 50 (2000), pp. 179–198.
  • D.F. Specht, A general regression neural network, IEEE Trans. Neural Net. 2 (1991), pp. 568–576.
  • M. Shen, A. Le Tiran, Y. Xiao, A. Golbraikh, H. Kohn, and A. Tropsha, Quantitative structure activity relationship analysis of functionalized amino acid anticonvulsant agents using k nearest neighbours and simulated annealing PLS method, J. Med. Chem. 45 (2002), pp. 2811–2823.
  • M. Kuhn, Building predictive models in R using the caret package, J. Stat. Soft. 28 (2008), pp. 1–26.
  • R.D.C. Team, R: A language and environment for statistical computing; R Foundation for Statistical Computing, Vienna, Austria, 2014; software available at http://www.R-project.org.
  • R. Hu, J.P. Doucet, M. Delamar, and R. Zhang, QSAR models for 2-amino-6-arylsulfonylbenzonitriles and congeners HIV-1 reverse transcriptase inhibitors based on linear and nonlinear regression methods, Eur. J. Med. Chem. 44 (2009), pp. 2158–2171.
  • C. Cortes and V. Vapnik, Support vector networks, Mach. Learn. 20 (1995), pp. 273–297.
  • U. Thissen, M. Pepers, B. Ustun, W.J. Melssen, and L.M.C. Buydens, Comparing support vector machines to PLS for spectral regression applications, Chemom. Intell. Lab. Syst. 73 (2004), pp. 169–179.
  • J.P. Doucet, F. Barbault, H. Xia, A. Panaye, and B.T. Fan, Nonlinear SVM approaches to QSPR/QSAR studies and drug design, Curr. Comput.-Aided Drug Des. 3 (2007), pp. 263–289.
  • H. Golmohammadi and Z. Dashtbozorgi, QSPR studies for predicting polarity parameter of organic compounds in methanol using support vector machine and enhanced replacement method, SAR QSAR Environ. Res. 27 (2016), pp. 977–997.
  • V. Cherkassky and Y. Ma, Practical selection of SVM parameters and noise estimation for SVM regression, Neural Net. 17 (2004), pp. 113–126.
  • B. Caputo, K. Sim, F. Furesjo, and A. Smola, Appearance-based object recognition using SVMs: which kernel should I use? in Proceedings of NIPS Workshop on Statistical Methods for Computational Experiments in Visual Processing and Computer Vision, 10–12 December 2002, Whistler, 2002.
  • A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, Kernlab, an S4 package for kernel methods in R, J. Stat. Soft. 11 (2004); software available at http://www.jstatsoft.org/v11/i09.
  • M.J.L. Orr, Introduction to Radial Basis Function Networks, Centre for Cognitive Science, Edinburgh University, Edinburgh, 1996.
  • T. Niwa, Using general regression and probabilistic neural networks to predict human intestinal absorption with topological descriptors derived from two-dimensional chemical structures, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 113–119.
  • E. Parzen, On estimation of a probability density function and mode, Ann. Math. Stat. 3 (1962), pp. 1065–1076.
  • P. Gramatica, M. Corradi, and V. Consonni, Modeling and prediction of soil sorption coefficients of non-ionic pesticides by molecular descriptors, Chemosphere 41 (2000), pp. 763–777.
  • L.H. Hall and L.B. Kier, Electrotopological state indices for atom types: A novel combination of electronic, topological and valence state information, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 1039–1045.
  • K. Roy and G. Ghosh, QSTR with extended topochemical atom indices. 2. Fish toxicity of substituted benzenes, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 559–567.
  • K. Roy and R.N. Das, On some novel extended topochemical atom (ETA) parameter for effective encoding of chemical information and modelling of fundamental physicochemical properties, SAR QSAR Environ. Res. 22 (2011), pp. 451–472.
  • J.W. King, A Z-weighted information content index, Int. J. Quantum Chem. 16 (1989), pp. 165–170.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Intell. Lab. Syst. 145 (2015), pp. 22–29.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.