379
Views
7
CrossRef citations to date
0
Altmetric
Articles

Impact of geometry optimization methods on QSAR modelling: A case study for predicting human serum albumin binding affinity

ORCID Icon &
Pages 491-509 | Received 20 Apr 2017, Accepted 09 Jun 2017, Published online: 14 Jul 2017

References

  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to? J. Med. Chem. 57 (2014), pp. 4977–5010.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, Vol. 1&2, Wiley-VCH, Weinheim, 2009.
  • G. Schüürmann, Quantum chemical descriptors in structure-activity relationships - calculation interpretation and comparison of methods, in Predicting Chemical Toxicity and Fate, M.T.D. Cronin and D.J. Livingstone, eds., CRC Press, Boca Raton, 2004, pp. 85–149.
  • S.J. Enoch, The use of quantum mechanics derived descriptors in computational toxicology, in Recent Advances in QSAR Studies. Methods and Applications, T. Puzyn, J. Leszczynski, and M.T.D. Cronin, eds., Springer, New York, 2010, pp. 13–28.
  • H.B. Schlegel, Geometry optimization, WIREs Comput. Mol. Sci. 1 (2011), pp. 790–809.
  • J.J.P. Stewart, Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements, J. Mol. Model. 13 (2007), pp. 1173–1213.
  • F.A. Pasha, H.K. Srivastava, and P.P. Singh, Comparative QSAR study of phenol derivatives with the help of density functional theory, Bioorg. Med. Chem. 13 (2005), pp. 6823–6829.
  • E. Eroglu, S. Palaz, O. Oltulu, H. Turkmen, and C. Ozaydın, Comparative QSTR study using semi-empirical and first principle methods based descriptors for acute toxicity of diverse organic compounds to the fathead minnow, Int. J. Mol. Sci. 8 (2007), pp. 1265–1283.
  • Reenu and Vikas, Exploring the role of quantum chemical descriptors in modeling acute toxicity of diverse chemicals to Daphnia magna, J. Mol. Graph. Model. 61 (2015), pp. 89–101.
  • DRAGON for Windows 6. Talete srl, Milan, Italy, 2013; software available at https://www.talete.mi.it/.
  • T. Puzyn, N. Suzuki, M. Haranczyk, and J. Rak, Calculation of quantum-mechanical descriptors for QSPR at the DFT level: Is it necessary? J. Chem. Inf. Model. 48 (2008), pp. 1174–1180.
  • Å. Rinnan, N.J. Christensen, and S.B. Engelsen, How the energy evaluation method used in the geometry optimization step affect the quality of the subsequent QSAR/QSPR models, J. Comput. Aided Mol. Des. 24 (2010), pp. 17–22.
  • A.D. Becke, Density-functional thermochemistry. III. The role of exact exchange, J. Chem. Phys. 98 (1993), pp. 5648–5652.
  • C. Lee, W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density, Phys. Rev. B. 37 (1988), pp. 785–789.
  • A.H. Pandith and N. Islam, Comparative assessment of QSTR models based on density functional, Hartree-Fock, AM1, and PM3 methods for acute toxicity of aliphatic compounds toward Vibrio fischeri, Int. J. Quantum Chem. 113 (2013), pp. 830–839.
  • A. Rybinska, A. Sosnowska, M. Barycki, and T. Puzyn, Geometry optimization method versus predictive ability in QSPR modeling for ionic liquids, J. Comput. Aided. Mol. Des. 30 (2016), pp. 165–176.
  • M. Fasano, S. Curry, E. Terreno, M. Galliano, G. Fanali, P. Narciso, S. Notari, and P. Ascenzi, The extraordinary ligand binding properties of human serum albumin, Life. 57 (2005), pp. 787–796.
  • Organization for Economic Co-Operation and Development, Guidance document on the validation of (quantitative) structure-activity relationships [(Q)SAR] models. Series on testing and assessment no. 69, OECD Environment Health and Safety Publications, Paris, France, 2007.
  • G. Colmenarejo, A. Alvarez-Pedraglio, and J.L. Lavandera, Cheminformatic models to predict binding affinities to human serum albumin, J. Med. Chem. 44 (2001), pp. 4370–4378.
  • SPARTAN 10. Wavefunction Inc., Irvine, USA, 2010; software available at https://wavefun.com.
  • G.A. Petersson, A. Bennett, T.G. Tensfeldt, M.A. Al-Laham, W.A. Shirley, and J. Mantzaris, A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms, J. Chem. Phys. 89 (1988), pp. 2193–2218.
  • D.N. Joanes and C.A. Gill, Comparing measures of sample skewness and kurtosis. Statistician 47 (1998), pp. 183–189.
  • R Development Core Team, R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2012; software available at https://www.R-project.org/.
  • P. Gramatica, N. Chirico, E. Papa, S. Cassani, and S. Kovarich, QSARINS: A new software for the development, analysis, and validation of QSAR MLR models, J. Comput. Chem. 34 (2013), pp. 2121–2132.
  • P. Gramatica, S. Cassani, and N. Chirico, QSARINS-Chem: Insubria data sets and new QSAR/QSPR models for environmental pollutants in QSARINS, J. Comput. Chem. 35 (2014), pp. 1036–1044.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inf. Model. 51 (2011), pp. 2320–2335.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring r2m metrics for validation of QSPR models, Chemom. Int. Lab. Syst. 107 (2011), pp. 194–205.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Int. Lab. Syst. 152 (2016), pp. 18–33.
  • P. Gramatica and A. Sangion, A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology, J. Chem. Inf. Model. 56 (2016), pp. 1127–1131.
  • K. Roy, S. Kar, and P. Ambure, On a simple approach for determining applicability domain of QSAR models, Chemom. Int. Lab. Syst. 145 (2015), pp. 22–29.
  • O. Devinyak, D. Havrylyuk, and R. Lesyk, 3D-MoRSE descriptors explained, J. Mol. Graph. Model. 54 (2014), pp. 194–203.
  • L.M. Hall, L.H. Hall, and L.B. Kier, Modeling drug albumin binding affinity with E-state topological structure representation, J. Chem. Inf. Comput. Sci. 43 (2003), pp. 2120–2128.
  • J. Cartmell, S. Enoch, D. Krstajic, and D.E. Leahy, Automated QSPR through competitive workflow, J. Comput. Aided Mol. Des. 19 (2005), pp. 821–833.
  • E. Estrada, E. Uriarte, E. Molina, Y. Simón-Manso, and G.W.A. Milne, An integrated in silico analysis of drug-binding to human serum albumin, J. Chem. Inf. Model. 46 (2006), pp. 2709–2724.
  • S.B. Gunturi, R. Narayanan, and A. Khandelwal, In silico ADME modelling 2: Computational models to predict human serum albumin binding affinity using ant colony systems, Bioorg. Med. Chem. 14 (2006), pp. 4118–4129.
  • O. Deeb and B. Hemmateenejad, ANN-QSAR model of drug-binding to human serum albumin, Chem. Biol. Drug Des. 70 (2007), pp. 19–29.
  • L. Chen and X. Chen, Results of molecular docking as descriptors to predict human serum albumin binding affinity, J. Mol. Graph. Model. 33 (2012), pp. 35–43.
  • G. Lambrinidis, T. Vallianatou, and A. Tsantili-Kakoulidou, In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review, Adv. Drug. Deliv. Rev. 86 (2015), pp. 27–45.
  • H. Liu, X. Yang, and R. Lu, Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin, Chemosphere. 156 (2016), pp. 1–7.
  • X. Wu, Q. Zhang, and J. Hu, QSAR study of the acute toxicity to fathead minnow based on a large dataset, SAR QSAR Environ. Res. 27 (2016), pp. 147–164.
  • G. Schneider, W. Neidhart, T. Giller, and G. Schmid, "Scaffold-Hopping" by topological pharmacophore search: A contribution to virtual screening, Angew. Chem. Int. Ed Engl. 38 (1999), pp. 2894–2896.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • V. Ruusmann, S. Sild, and U. Maran, QSAR DataBank repository: Open and linked qualitative and quantitative structure-activity relationship models, J. Cheminf. 7 (2015), p. 32.
  • R.M. Pirsig, Zen and the Art of Motorcycle Maintenance: An Inquiry into Values, William Morrow and Company, New York City, 1974.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.