142
Views
3
CrossRef citations to date
0
Altmetric
Articles

Tensor algebra-based geometric methodology to codify central chirality on organic molecules

, , , , , , & show all
Pages 541-556 | Received 04 Apr 2017, Accepted 16 Jun 2017, Published online: 14 Jul 2017

References

  • M.R. Islam, J.G. Mahdi, and I.D. Bowen, Pharmacological importance of stereochemical resolution of enantiomeric drugs, Drug Saf. 17 (2012), pp. 149–165.
  • K. Williams and E. Lee, Importance of drug enantiomers in clinical pharmacology, Drugs 30 (2012), pp. 333–354.
  • A. Golbraikh, D. Bonchev, and A. Tropsha, Novel chirality descriptors derived from molecular topology, J. Chem. Inf. Comput. Sci. 41 (2001), pp. 147–158.
  • H. Schumacher, D.A. Blake, J.M. Gurian, and J.R. Gillette, A comparison of the teratogenic activity of thalidomide in rabbits and rats, J. Pharmacol. Exp. Ther. 160 (1968), pp. 189–200.
  • S.C. Stinson, Chiral drugs, Chem. Eng. News 78 (2000), pp. 55–78.
  • G.M. Crippen, Chirality descriptors in QSAR, Curr. Comput. Aided Drug Des. 4 (2008), pp. 259–264.
  • J.V. de Julian-Ortiz, C. de Gregorio Alapont, I. Rıos-Santamarina, R. Garcıa-Domenech, and J. Galvez, Prediction of properties of chiral compounds by molecular topology, J. Mol. Graph. Model. 16 (1998), pp. 14–18.
  • R.M. Stess, R. Mirmiran, J.R. Armstrong, S.R. Jensen, J.V. de Julian-Ortiz, C. de Gregorio Alapont, I. Ros-Santamarina, R. Garca-Domenech, and J. Galvez, Prediction of properties of chiral compounds by molecular topology – A tool for de novo drug design, J. Mol. Graph. Model. 16 (1998), pp. 14–18.
  • H.G. Dı́az, I.H. Sánchez, E. Uriarte, and L. Santana, Symmetry considerations in Markovian chemicals ‘in silico’ design (MARCH-INSIDE) I: Central chirality codification, classification of ACE inhibitors and prediction of σ-receptor antagonist activities, Comput. Biol. Chem. 27 (2003), pp. 217–227.
  • Y. Marrero-Ponce and J.A. Castillo-Garit, 3D-chiral atom, atom-type, and total non-stochastic and stochastic molecular linear indices and their applications to central chirality codification, J. Comput. Aided Mol. Des. 19 (2005), pp. 369–383.
  • Y. Marrero-Ponce, J.A. Castillo-Garit, E.A. Castro, F. Torrens, and R. Rotondo, 3D-chiral (2.5) atom-based TOMOCOMD-CARDD descriptors: Theory and QSAR applications to central chirality codification, J. Math. Chem. 44 (2008), pp. 755–786.
  • Y. Marrero Ponce, H.G. Dı́az, V.R. Zaldivar, F. Torrens, and E.A. Castro, 3D-chiral quadratic indices of the ‘molecular pseudograph’s atom adjacency matrix’ and their application to central chirality codification: Classification of ACE inhibitors and prediction of σ-receptor antagonist activities, Bioorg. Med. Chem. 12 (2004), pp. 5331–5342.
  • J.V. de Julián-Ortiz, R. García-Domenech, J. Gálvez Alvarez, R. Soler Roca, F.J. García-March, and G.M. Antón-Fos, Use of topological descriptors in chromatographic chiral separations, J. Chromatogr. A 719 (1996), pp. 37–44.
  • S. Fujita, Stereoisograms for reorganizing the theoretical foundations of stereochemistry and stereoisomerism. Part 2: rational avoidance of misleading standpoints for R/S-stereodescriptors of the Cahn–Ingold–Prelog system, Tetrahedron: Asymmetry 25 (2014), pp. 1169–1189.
  • G. Helmchen, The 50th Anniversary of the Cahn–Ingold–Prelog Specification of Molecular Chirality, Angewandte Chemie International Edition 55 (2016), pp. 6798–6799.
  • H.P. Schultz, E.B. Schultz, and T.P. Schultz, Topological organic chemistry. 9. Graph theory and molecular topological indices of stereoisomeric organic compounds, J. Chem. Inf. Comput. Sci. 35 (1995), pp. 864–870.
  • D.H. Wolpert and W.G. Macready, No free lunch theorems for optimization, Evol. Comput. 1 (1997), pp. 67–82.
  • N. Cubillán, Y. Marrero-Ponce, H. Ariza-Rico, S. Barigye, C. García-Jacas, J. Valdes-Martini, and Y. Alvarado, Novel global and local 3D atom-based linear descriptors of the Minkowski distance matrix: Theory, diversity–variability analysis and QSPR applications, J. Math. Chem. 53 (2015), pp. 2028–2064.
  • Y. Marrero-Ponce, C.R. García-Jacas, S.J. Barigye, J.R. Valdés-Martiní, O.M. Rivera-Borroto, R.W. Pino-Urias, N. Cubillán, Y.J. Alvarado, and H. Le-Thi-Thu, Optimum search strategies or novel 3D molecular descriptors: Is there a stalemate?, Curr. Bioinform. 10 (2015), pp. 533–564.
  • C.R. García-Jacas, Y. Marrero-Ponce, S.J. Barigye, J.R. Valdés-Martiní, O.M. Rivera-Borroto, and J. Olivero-Verbel, N-linear algebraic maps for chemical structure codification: A suitable generalization for atom-pair approaches? Curr. Drug Metb. 15 (2014), pp. 441–469.
  • C.R. García-Jacas, Y. Marrero-Ponce, S.J. Barigye, T. Hernández-Ortega, L. Cabrera-Leyva, and A. Fernández-Castillo, N-tuple topological/geometric cutoffs for 3D N-linear algebraic molecular codifications: Variability, linear independence and QSAR analysis, SAR QSAR Environ. Res. 27 (2016), pp. 949–975.
  • J.W. Godden, F.L. Stahura, and J. Bajorath, Variability of molecular descriptors in compound databases revealed by Shannon entropy calculations, J. Chem. Inf. Model. 40 (2000), pp. 796–800.
  • R.W.P. Urias, S.J. Barigye, Y. Marrero-Ponce, C.R. García-Jacas, J.R. Valdes-Martiní, and F. Perez-Gimenez, IMMAN: Free software for information theory-based chemometric analysis, Mol. Divers. 19 (2015), pp. 305–319.
  • C.R. García-Jacas, E. Contreras-Torres, Y. Marrero-Ponce, M. Pupo-Meriño, S.J. Barigye, and L. Cabrera-Leyva, Examining the predictive accuracy of the novel 3D N-linear algebraic molecular codifications on benchmark datasets, J. Cheminform. 8 (2016), pp. 1–16.
  • C.R. García-Jacas, K. Martinez-Mayorga, Y. Marrero-Ponce, and J. Medina-Franco, Conformation-dependent QSAR approach for the prediction of inhibitory activity of bromodomain modulators, SAR QSAR Environ. Res. 28 (2017), pp. 41–58.
  • C.R. García-Jacas, L. Aguilera-Mendoza, R. González-Pérez, Y. Marrero-Ponce, L. Acevedo-Martínez, S.J. Barigye, and T. Avdeenko, Multi-server approach for high-throughput molecular descriptors calculation based on multi-linear algebraic maps, Mol. Inform. 34 (2015), pp. 60–69.
  • C.R. García-Jacas, Y. Marrero-Ponce, L. Acevedo-Martínez, S.J. Barigye, J.R. Valdés-Martiní, and E. Contreras-Torres, QuBiLS-MIDAS: A parallel free-software for molecular descriptors computation based on multilinear algebraic maps, J. Comput. Chem. 35 (2014), pp. 1395–1409.
  • E.L. Eliel, S.H. Wilen, and L.N. Mandel, Stereochemistry of organic compounds, Rec. Trav. Chim. Pays Bas 114 (1995), p. 378.
  • R.D. Cramer, D.E. Patterson, and J.D. Bunce, Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins, J. Am. Chem. Soc. 110 (1988), pp. 5959–5967.
  • D. Robert, L. Amat, and R. Carbó-Dorca, Three-dimensional quantitative–activity relationships from tuned molecular quantum similarity measures: Prediction of the corticosteroid-binding globulin binding affinity for a steroid family, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 333–344.
  • N. Stiefl and K. Baumann, Mapping property distributions of molecular surfaces: Algorithm and evaluation of a novel 3D quantitative structure−activity relationship technique, J. Med. Chem. 46 (2003), pp. 1390–1407.
  • M. Pastor, G. Cruciani, I. McLay, P. Pickett, and S. Clementi, GRid-INdependent descriptors (GRIND): A novel class of alignment-independent three-dimensional molecular descriptors, J. Med. Chem. 43 (2000), pp. 3233–3243.
  • A.N. Jain., K. Koile., and D. Chapman, Compass: Predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark, J. Med. Chem. 37 (1994), pp. 2315–2327.
  • R. Todeschini, V. Consonni, A. Mauri, M. Pavan, and R. Leardi, MobyDigs: Software for regression and classification models by genetic algorithms, in Data Handling in Science and Technology, R. Leardi, ed., Elsevier, Amsterdam, The Netherlands, 2003, pp. 141–167.
  • M. Friedman, A Comparison of alternative tests of significance for the problem of $m$ rankings, Ann. Math. Statist. 11 (1940), pp. 86–92.
  • J. Alcalá-Fdez, L. Sánchez, S. García, M.J.d. Jesus, S. Ventura, J.M. Garrell, J. Otero, C. Romero, J. Bacardit, V.M. Rivas, J.C. Fernández, and F. Herrera, KEEL: A software tool to assess evolutionary algorithms for data mining problems, Soft Comput. 13 (2009), pp. 307–318.
  • J.A.C. Garit, R.G. Domenech, Y.M. Ponce, F.T. Zaragozá, and C.A. Mazarío, Prediction of the binding affinity between fenoterol derivatives and the b2 adrenergic receptor using atom-based 3D-chiral linearindices, Nereis: Revista iberoamericana interdisciplinar de métodos, modelización y simulación (2012), pp. 9–18.
  • J. Castillo-Garit, R. García-Domenech, Y. Marrero-Ponce, F. Torrens, and C. Abad, Atom-based 3D-chiral quadratic indices. Part 3: Prediction of the binding affinity of the stereoisomers of fenoterolto the β2 adrenergic receptor, Afinidad 68 (2011).
  • K. Jozwiak, C. Khalid, M.J. Tanga, I. Berzetei-Gurske, L. Jimenez, J.A. Kozocas, A. Woo, W. Zhu, R.-P. Xiao, D.R. Abernethy, and I.W. Wainer, Comparative molecular field analysis of the binding of the stereoisomers of fenoterol and fenoterol derivatives to the β2 adrenergic receptor, J. Med. Chem. 50 (2007), pp. 2903–2915.
  • H. Van de Waterbeemd, N. El Tayar, B. Testa, H. Wikstroem, and B. Largent, Quantitative structure–activity relationships and eudismic analyses of the presynaptic dopaminergic activity and dopamine D2 and.sigma. receptor affinities of 3-(3-hydroxyphenyl)piperidines and octahydrobenzo[f]quinolines, J. Med. Chem. 30 (1987), pp. 2175–2181.
  • C. Yang and C. Zhong, Chirality factors and their application to QSAR studies of chiral molecules, QSAR Comb. Sci. 24 (2005), pp. 1047–1055.
  • S.R. O'Donnell, A selective β-adrenoreceptor stimulant (Th1165a) related to orciprenaline, Eur. J. Pharmacol. 12 (1970), pp. 35–43.
  • R.C. Heel, R.N. Brogden, T.M. Speight, and G.S. Avery, Fenoterol: A review of its pharmacological properties and therapeutic efficacy in asthma, Drugs 15 (1978), pp. 3–32.
  • R.-P. Xiao, S.-J. Zhang, K. Chakir, P. Avdonin, W. Zhu, R.A. Bond, C.W. Balke, E.G. Lakatta, and H. Cheng, Enhanced Gi signaling selectively negates β2-adrenergic receptor (AR)– but not β1-ar–mediated positive inotropic effect in myocytes from failing rat hearts, Circulation 108 (2003), pp. 1633–1639.
  • B.L. Largent, A.L. Gundlach, and S.H. Snyder, Psychotomimetic opiate receptors labeled and visualized with (+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine, Proc. Natl. Acad. Sci. USA 81 (1984), pp. 4983–4987.
  • M. Vincent, B. Marchand, G. Rémond, S. Jaguelin-Guinamant, G. Damien, B. Portevin, J.Y. Baumal, J.P. Volland, J.P. Bouchet, and P.H. Lambert, Synthesis and ACE inhibitory activity of the stereoisomers of perindopril (S 9490) and perindoprilate (S 9780), Drug Des. Discov. 9 (1992), pp. 11–28.
  • A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, and W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (1992), pp. 10024–10035.
  • J.-P. Ebejer, G.M. Morris, and C.M. Deane, Freely available conformer generation methods: How good are they? J. Chem. Inf. Model. 52 (2012), pp. 1146–1158.
  • J.A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens, R. García-Domenech, and J.E. Rodríguez-Borges, Applications of bond-based 3D-chiral quadratic indices in QSAR studies related to central chirality codification, QSAR Comb. Sci. 28 (2009), pp. 1465–1477.
  • J.A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens, R. Garcia-Domenech, and V. Romero-Zaldivar, Bond-based 3D-chiral linear indices: Theory and QSAR applications to central chirality codification, J. Comput. Chem. 29 (2008), pp. 2500–2512.
  • J.A. Castillo-Garit, Y. Marrero-Ponce, F. Torrens, and R. Rotondo, Atom-based stochastic and non-stochastic 3D-chiral bilinear indices and their applications to central chirality codification, J. Mol. Graph. Model. 26 (2007), pp. 32–47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.