142
Views
4
CrossRef citations to date
0
Altmetric
Articles

Six global and local QSPR models of aqueous solubility at pH = 7.4 based on structural similarity and physicochemical descriptors

, , , &
Pages 661-676 | Received 14 Jun 2017, Accepted 14 Aug 2017, Published online: 11 Sep 2017

References

  • G.L. Amidon, H. Lennernas, V.P. Shah, and J.R. Crison, A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm. Res. 12 (1995), pp. 413–420.
  • M.-L. Chen, G.L. Amidon, L.Z. Benet, H. Lennernas, and L.X. Yu, The BCS, BDDCS, and regulatory guidances, Pharm. Res. 28 (2011), pp. 1774–1778.
  • S.H. Yalkowsky and S. Banerjee, Aqueous Solubility: Methods of Estimation for Organic Compounds, Marcel Dekker, New York, 1992.
  • K.V. Balakin, N.P. Savchuk, and I.V. Tetko, In silico approaches to prediction of aqueous and DMSO solubility of drug-like compounds: Trends, problems and solutions, Current Med. Chem. 13 (2006), pp. 223–241.
  • W.L. Jorgensen and E.M. Duffy, Prediction of drug solubility from structure, Adv. Drug Delivery Rev. 54 (2002), pp. 355–366.
  • A. Llinas, R.C. Glen, and J.M. Goodman, Solubility challenge: Can you predict solubilities of 32 molecules using a database of 100 reliable measurements? J. Chem. Inf. Model. 48 (2008), pp. 1289–1303.
  • J.C. Dearden, In silico prediction of aqueous solubility, Expert Opin. Drug Discov. 1 (2006), pp. 31–52.
  • P.R. Duchowicz and E.A. Castro, QSPR studies on aqueous solubility of drug-like compounds, Int. J. Mol. Sci. 10 (2009), pp. 2558–2577.
  • J.C. Dearden, P. Rotureau, and G. Fayet, QSPR prediction of physicochemical properties for REACH, SAR QSAR Environ. Res. 24 (2013), pp. 279–318.
  • K.H. Grime, P. Barton, and D.F. McGinnity, Application of in silico, in vitro and preclinical pharmacokinetic data for the effective and efficient prediction of human pharmacokinetics, Mol. Pharmaceutics 10 (2013), pp. 1191–1206.
  • J. Wichard and R. Kühne, Predicting Aqueous Solubility from Structure, J. Univ. Appl. Sci. Mittweida. Proceedings of the 20th IWKM, 28–29 October 2009.
  • M. Salahinejad, T.C. Le, and D.A. Winkler, Aqueous solubility prediction: Do crystal lattice interactions help? Mol. Pharm. 10 (2013), pp. 2757–2766.
  • O.A. Raevsky, D.E. Polianczyk, V.Y. Grigorev, O.E. Raevskaja, and J.C. Dearden, In silico prediction of aqueous solubility: A comparative study of local and global predictive models, Mol. Inform. 34 (2015), pp. 417–430.
  • O.A. Raevsky, O.E. Raevskaja, and K.J. Schaper, Analysis of water solubility data on the basis of HYBOT descriptors. Part 3. Solubility of solid neutral chemicals and drugs, QSAR Comb. Sci. 23 (2004), pp. 327–343.
  • K.J. Schaper, B. Kunza, and O.A. Raevsky, Analysis of water solubility data on the basis of HYBOT descriptors. Part 2. Solubility of liquid chemicals and drugs, QSAR Comb. Sci. 22 (2003), pp. 943–958.
  • O.A. Raevsky, V.Y. Grigor’ev, D.E. Polianczyk, O.E. Raevskaja, and J.C. Dearden, Calculation of aqueous solubility of crystalline un-ionized organic chemicals and drugs based on structural similarity and physicochemical descriptors, J. Chem. Inf. Model. 54 (2014), pp. 683–691.
  • F. Chevillard, D. Lagorce, C. Reynès, B.O. Villoutreix, P. Vayer, and M.A. Miteva, In silico prediction of aqueous solubility: A multimodel protocol based on chemical similarity, Mol. Pharm. 9 (2012), pp. 3127–3135.
  • O.A. Raevsky, S.V. Trepalin, H.P. Trepalina, V.A. Gerasimenko, and O.E. Raevskaja, SLIPPER-2001 – Software for predicting molecular properties on the basis of physicochemical descriptors and structural similarity, J. Chem. Inf. Comput. Sci. 42 (2002), pp. 540–549.
  • N.T. Hansen, I. Kouskoumvekaki, F.S. Jørgensen, S. Brunak, and S.O. Jónsdóttir, Prediction of pH-dependent aqueous solubility of druglike molecules, J. Chem. Inf. Model. 46 (2006), pp. 2601–2609.
  • A.C. Lee and G.M. Crippen, Predicting pKa, J. Chem. Inf. Model. 49 (2009), pp. 2013–2033.
  • T. Cheng, Q. Li, Y. Wang, and S.H. Bryant, Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection, J. Chem. Inf. Model. 51 (2011), pp. 229–236.
  • O. Obrezanova, G. Csanyi, J.M.R. Gola, and M.D. Segall, Gaussian processes: A method for automatic QSAR modeling of ADME properties, J. Chem. Inf. Model. 47 (2007), pp. 1847–1857.
  • D.S. Palmer and J.B.O. Mitchell, Is experimental data quality the limiting factor in predicting the aqueous solubility of druglike molecules? Mol. Pharm. 11 (2014), pp. 2962–2972.
  • G.I. Poda, D.P. Landsittel, K. Brumbaugh, D.S. Sharp, H.F. Frasch, and E. Demchuk, Random sampling or ‘random’ model in skin flux measurements? [Commentary on “Investigation of the mechanism of flux across human skin in vitro by quantitative structure-permeability relationships”], Eur. J. Pharm. Sci. 14 (2001), pp. 197–200.
  • J.C. Dearden, M.T.D. Cronin, and K.L.E. Kaiser, How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR), SAR QSAR Environ. Res. 20 (2009), pp. 241–266.
  • G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper, and O.A. Raevsky, Thermodynamic aspects of solubility process of some sulfonamides, J. Pharm. Biomed. Anal. 54 (2011), pp. 222–224.
  • G.L. Perlovich, A.M. Ryzhakov, N.N. Strakhova, V.P. Kazachenko, K.J. Schaper, and O.A. Raevsky, Thermodynamic aspects of solubility, solvation and partitioning processes of some sulfonamides, J. Chem. Thermodyn. 43 (2011), pp. 683–689.
  • O. A. Raevsky, V. Ju. Grigorev, S. V. Trepalin, HYBOT program, registration by Russian State Patent Agency No. 990090 of 26.02.99.
  • DRAGON, Version 5.5; Talete srl, Milano, Italy, 2011. http://www.talete.mi.it.
  • Sybyl-X Molecular Modeling Software Packages, Version 2.0. TRIPOS Associates, Inc; St. Louis, MO, USA: 2012
  • VolSurf+ manual and software available at: http://www.moldiscovery.com/docs/vsplus/.
  • G.E. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computations, Prentice Hall, New Jersey, 1977, pp. 227–235.
  • L. Breiman and L. Cutler, RF5new; software available at http://www.stat.berkeley.edu/~breiman/RandomForests/cc_examples/prog.f.
  • L. Breiman, RRforest; software available at: http://www.stat.berkeley.edu/~breiman/RandomForests/reg_examples/RFR.f.
  • J. Colmenares, fortran-ls-svm; software available at: https://github.com/jbcolme/fortran-ls-svm.
  • W.A. Warr, Some trends in chemoinformatics, Methods Mol. Biol. 672 (2011), pp. 1–37.
  • S. Wold and M. Sjostrom, SIMCA: A method for analyzing chemical data in terms of similarity and analogy, in Chemometrics Theory and Application, B.R. Kowalski, ed., American Chemical Society Symposium Series 52, American Chemical Society, Washington, 1977, pp. 243–282.
  • O.A. Raevsky, A.M. Sapegin, and N.S. Zefirov, Discriminant-regression model, in QSAR: Rational Approaches in the Design of Bioactive Compounds, C. Silipo and A. Vittoria, eds., Elsevier, Amsterdam, 1991, pp. 189–192.
  • O.A. Raevsky, A.M. Sapegin, and N.S. Zefirov, The QSAR discriminant-regression model, QSAR 13 (1994), pp. 412–418.
  • R. Guha, D. Dutta, P.C. Jurs, and T. Chen, Local lazy regression: Making use of the neighborhood to improve QSAR predictions, J. Chem. Inf. Model. 46 (2006), pp. 1836–1847.
  • S. Zhang, A. Golbraikh, S. Oloff, H. Kohn, and A. Tropsha, A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models, J. Chem. Inf. Model. 46 (2006), pp. 1984–1995.
  • A.P. Hill and R.J. Young, Getting physical in drug discovery: A contemporary perspective on solubility and hydrophobicity, Drug. Discov. Today 15 (2010), pp. 648–654.
  • P. Buchwald and N. Bodor, Soft quaternary anticholinergics: Comprehensive quantitative structure−activity relationship (QSAR) with a linearized biexponential (LinBiExp) model, J. Med. Chem. 49 (2006), pp. 883–891.
  • O.A. Raevsky, K.J. Schaper, H. van de Waterbeemd, and J.W. McFarland, Hydrogen bond contributions to properties and activity of chemicals and drugs, in Molecular Modeling and Prediction of Bioactivity, K. Gundertofte and F.S. Jorgensen, eds., Kluwer Academic/Plenum Publishers, New York, 2000, pp. 221–227.
  • O.A. Raevsky, Molecular lipophilicity calculations of chemically heterogeneous chemicals and drugs on the basis of structural similarity and physicochemical parameters, SAR QSAR Environ. Res. 12 (2001), pp. 367–381.
  • O.A. Raevsky, V.J. Grigor’ev, E.A. Modina, and A.P. Worth, Prediction of acute toxicity to mice by the arithmetic mean toxicity (AMT) modelling approach, SAR QSAR Environ. Res. 21 (2010), pp. 265–275.
  • O.A. Raevsky, V.Y. Grigor’ev, E.A. Liplavskaya, and A.P. Worth, Prediction of acute rodent toxicity on the basis of chemical structure and physicochemical similarity, Mol. Inf. 30 (2011), pp. 267–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.