188
Views
11
CrossRef citations to date
0
Altmetric
Special Issue: 9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2017) - Part 1. Guest Editors: A.K. Saxena and M. Saxena

Prediction of metabolites of epoxidation reaction in MetaToxFootnote$

ORCID Icon, , , , & ORCID Icon
Pages 833-842 | Received 25 Oct 2017, Accepted 27 Oct 2017, Published online: 20 Nov 2017

References

  • M.S. Benedetti, R. Whomsley, I. Poggesi, W. Cawello, F.X. Mathy, M.L. Delporte, P. Papeleu, and J.B. Watelet, Drug metabolism and pharmacokinetics, Drug Metab. Rev. 41 (2009), pp. 344–390.
  • F.P. Guengerich, Cytochrome P450s and other enzymes in drug metabolism and toxicity, AAPS J. 8 (2006), pp. 101–111.
  • F.P. Guengerich, Intersection of roles of cytochrome P450 enzymes with xenobiotic and endogenous substrates. Relevance to toxicity and drug interactions, Chem. Res. Toxicol. 30 (2017), pp. 2–12.
  • W. Liu, J. Shi, L. Zhu, L. Dong, F. Luo, M. Zhao, Y. Wang, M. Hu, L. Lu, and Z. Liu, Reductive metabolism of oxymatrine is catalyzed by microsomal CYP3A4, Drug Des. Devel. Ther. 9 (2015), pp. 5771–5783.
  • J. D’Agostino, H. Zhang, C. Kenaan, and P. Hollenberg, Mechanism-based inactivation of human cytochrome P450 2B6 by chlorpyrifos, Chem. Res. Toxicol. 28 (2015), pp. 1484–1495.
  • Li. Xiaohai, T.M. Kamenecka, and M.D. Cameron, Cytochrome P450-mediated bioactivation of the epidermal growth factor receptor inhibitor erlotinib to a reactive electrophile, Drug Metab. Dispos. 38 (2010), pp. 1238–1245.
  • S.M. Attia, Deleterious effects of reactive metabolites, Oxid. Med. Cell Longev. 3 (2010), pp. 238–253.
  • F.P. Guengerich, Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity, Chem. Res. Toxicol. 14 (2001), pp. 611–650.
  • F.P. Guengerich, Cytochrome P450 and chemical toxicology, Chem. Res. Toxicol. 21 (2008), pp. 70–83.
  • F.P. Guengerich, Metabolic-activation of carcinogens, Pharmacol. Ther. 54 (1992), pp. 17–61.
  • F.P. Guengerich and T. Shimada, Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes, Chem. Res. Toxicol. 4 (1991), pp. 391–407.
  • J. Uetrecht, Idiosyncratic drug reactions: Current understanding, Annu. Rev. Pharmacol. Toxicol. 47 (2007), pp. 513–539.
  • K. Ikehata, T.G. Duzhak, N.A. Galeva, T. Ji, Y.M. Koen, and R.P. Hanzlik, Protein targets of reactive metabolites of thiobenzamide in rat liver in vivo, Chem. Res. Toxicol. 21 (2008), pp. 1432–1442.
  • D.E. Amacher, Reactive intermediates and the pathogenesis of adverse drug reactions: The toxicology perspective, Curr Drug Metab. 7 (2006), pp. 219–229.
  • R. Vidyasagar and P.A. Guruprasad, Hepatotoxicity related to anti-tuberculosis drugs: Mechanisms and management, J. Clin. Exp. Hepatol. 3 (2013), pp. 37–49.
  • R.M. Irving and A.A. Elfarra, Role of reactive metabolites in the circulation in extrahepatic toxicity, Expert Opin. Drug Metab. Toxicol. 8 (2012), pp. 1157–1172.
  • P.E. Levi and E. Hodgson, Reactive metabolites and toxicity, in Introduction to Biochemical Toxicology, 3rd ed., E. Hodgson and R.C. Smart, eds., Wiley, New York, 2001, pp. 199–220.
  • T.B. Hughes, G.P. Miller, and S.J. Swamidass, Modeling epoxidation of drug-like molecules with a deep machine learning network, ACS Cent. Sci. 1 (2015), pp. 168–180.
  • P. Rydberg, R. Lonsdale, J. Harvey, A. Mulholland, and L. Olsen, Trends in predicted chemoselectivity of cytochrome P450 oxidation: B3LYP barrier heights for epoxidation and hydroxylation reactions, J. Mol. Graph Model. 52 (2014), pp. 30–35.
  • J. Zhang, L. Ji, and W. Liu, In silico prediction of cytochrome P450-mediated biotransformations of xenobiotics: A case study of epoxidation, Chem. Res. Toxicol. 28 (2015), pp. 1522–1531.
  • K. Kim and K.D. Jordan, Comparison of density functional and MP2 calculations on the water monomer and dimer, J. Phys. Chem. 98 (1994), pp. 10089–10094.
  • P.J. Stephens, F.J. Devlin, C.F. Chabalowski, and M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, J. Phys. Chem. 98 (1994), pp. 11623–11627.
  • J. Zaretzki, M. Matlock, and S.J. Swamidass, XenoSite: Accurately predicting CYP-mediated sites of metabolism with neural networks, J. Chem. Inf. Model. 53 (2013), pp. 3373–3383.
  • A. Rudik, A. Dmitriev, A. Lagunin, D. Filimonov, and V. Poroikov, Metabolism site prediction based on xenobiotic structural formulas and PASS prediction algorithm, J. Chem. Inf. Model. 54 (2014), pp. 498–507.
  • P. Pogodin, A. Lagunin, D. Filimonov, and V. Poroikov, PASS targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach, SAR QSAR Environ. Res. 26 (2015), pp. 783–793.
  • V. Konova, A. Lagunin, P. Pogodin, E. Kolotova, A. Shtil, and V. Poroikov, Virtual screening of chemical compounds active against breast cancer cell lines based on cell cycle modelling, prediction of cytotoxicity and interaction with targets, SAR QSAR Environ. Res. 26 (2015), pp. 595–604.
  • M. Stasevych, V. Zvarych, V. Lunin, N. Deniz, Z. Gokmen, O. Akgun, E. Ulukaya, V. Poroikov, T. Gloriozova, and V. Novikov, Computer-aided prediction and cytotoxicity evaluation of dithiocarbamates of 9,10-anthracenedione as new anticancer agents, SAR QSAR Environ. Res. 28 (2017), pp. 355–366.
  • A.V. Rudik, V.M. Bezhentsev, A.V. Dmitriev, D.S. Druzhilovskiy, A.A. Lagunin, D.A. Filimonov, and V.V. Poroikov, MetaTox: Web application for predicting structure and toxicity of xenobiotics' metabolites, J. Chem. Inf. Model. 57 (2017), pp. 638–642.
  • D. Filimonov, V. Poroikov, Y. Borodina, and T. Gloriozova, Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the other descriptors, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 666–670.
  • A. Rudik, A. Dmitriev, A. Lagunin, D. Filimonov, and V. Poroikov, SOMP: Web server for in silico prediction of sites of metabolism for drug-like compounds, Bioinformatics 31 (2015), pp. 2046–2048.
  • A. Rudik, A. Dmitriev, A. Lagunin, D. Filimonov, and V. Poroikov, Prediction of reacting atoms for the major biotransformation reactions of organic xenobiotics, J. Cheminform. 26 (2016), pp. 595–604.
  • Biovia Metabolite database, BIOVIA, San Diego, 2017; available at: http://accelrys.com/products/collaborative-science/databases/bioactivity-databases/biovia-metabolite.html
  • L. Hovander, T. Malmberg, M. Athanasiadou, I. Athanassiadis, S. Rahm, A. Bergman, and E. Wehler, Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma, Arch. Environ. Contam. Toxicol. 42 (2002), pp. 105–117.
  • J. Park, L. Linderholm, M. Charles, M. Athanasiadou, J. Petrik, A. Kocan, B. Drobna, T. Trnovec, A. Bergman, and I. Hertz-Picciotto, Polychlorinated biphenyls and their hydroxylated metabolites (OH-PCBs) in pregnant women from eastern Slovakia, Environ. Health Perspect. 115 (2007), pp. 20–27.
  • J. Zaretzki, C. Bergeron, P. Rydberg, T. Huang, K. Bennett, and C. Breneman, RS-Predictor: A new tool for predicting sites of cytochrome P450-mediated metabolism applied to CYP 3A4, J. Chem. Inf. Model. 51 (2011), pp. 1667–1689.
  • J. Swets, Measuring the accuracy of diagnostic systems, Rev. Sci. 240 (1988), pp. 1285–1293.
  • J. Manier, W. Chang, J. Kirchner, and E. Beltaos, Hepatotoxicity associated with ticrynafen – a uricosuric diuretic, Am. J. Gastroenterol. 77 (1982), pp. 401–404.
  • P. Valadon, P. Dansette, J. Girault, C. Amar, and D. Mansuy, Thiophene sulfoxides as reactive metabolites: Formation upon microsomal oxidation of a 3-aroylthiophene and fate in the presence of nucleophiles in vitro and in vivo, Chem. Res. Toxicol. 9 (1996), pp. 1403–1413.
  • P. Dansette, G. Bertho, and D. Mansuy, First evidence that cytochrome P450 may catalyze both S-oxidation and epoxidation of thiophene derivatives, Biochem. Biophys. Res. Commun. 338 (2005), pp. 450–455.
  • C. Jaladanki, N. Taxak, R. Varikoti, and P. Bharatam, Toxicity originating from thiophene containing drugs: Exploring the mechanism using quantum chemical methods, Chem. Res. Toxicol. 28 (2015), pp. 2364–2376.
  • D. Gramec, M. Peterlin, and M. Sollner, Dolenc, Bioactivation potential of thiophene-containing drugs, Chem. Res. Toxicol. 27 (2014), pp. 1344–1358.
  • Marvin JS, ChemAxon, Budapest, Hungary, 2017; available at: https://www.chemaxon.com/products/marvin/marvin-js/
  • P. Rademacher, C. Woods, Q. Huang, G. Szklarz, and S. Nelson, Differential oxidation of two thiophene-containing regioisomers to reactive metabolites by cytochrome P450 2C9, Chem. Res. Toxicol. 25 (2012), pp. 895–903.
  • M. López-García, P. Dansette, and J. Coloma, Kinetics of tienilic acid bioactivation and functional generation of drug-protein adducts in intact rat hepatocytes, Biochem. Pharmacol. 70 (2005), pp. 1870–1882.
  • M. Darnell, K. Breitholtz, E. Isin, U. Jurva, and L. Weidolf, Significantly different covalent binding of oxidative metabolites, acyl glucuronides, and S-acyl CoA conjugates formed from xenobiotic carboxylic acids in human liver microsomes, Chem. Res. Toxicol. 28 (2015), pp. 886–896.
  • M. Shipkova, V. Armstrong, M. Oellerich, and E. Wieland, Acyl glucuronide drug metabolites: Toxicological and analytical implications, Ther. Drug Monit. 25 (2003), pp. 1–16.
  • Y. Koen, D. Sarma, T. Williams, N. Galeva, R. Obach, and R. Hanzlik, Identification of protein targets of reactive metabolites of tienilic acid in human hepatocytes, Chem. Res. Toxicol. 5 (2012), pp. 1145–1154.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.