301
Views
41
CrossRef citations to date
0
Altmetric
Special Issue: 9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2017) - Part 1. Guest Editors: A.K. Saxena and M. Saxena

How good are publicly available web services that predict bioactivity profiles for drug repurposing?Footnote$

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 843-862 | Received 25 Oct 2017, Accepted 29 Oct 2017, Published online: 29 Nov 2017

References

  • T.T. Ashburn and K.B. Thor, Drug repositioning: Identifying and developing new uses for existing drugs, Nat. Rev. Drug Discov. 3 (2004), pp. 673–683.
  • C. Chong and D. Sullivan, New uses for old drugs, Nature 448 (2007), p. 645.
  • A.M. Thayer, Drug repurposing, Chem. Eng. News 90 (2012), pp. 15–25.
  • T.I. Oprea and J.P. Overington, Computational and practical aspects of drug repositioning, Assay Drug. Dev. Technol. 13 (2015), pp. 1–8.
  • D. Cavalla, APT drug R&D: The right active ingredient in the right presentation for the right therapeutic use, Nat. Rev. Drug Discov. 8 (2009), pp. 849–853.
  • S. Naylor and J.M. Schonfeld, Therapeutic drug repurposing, repositioning and rescue - Part I: Overview, Drug Discov. World 16 (2014), pp. 49–62.
  • S. Ekins, A.J. Williams, M.D. Krasowski, and J.S. Freundlich, In silico repositioning of approved drugs for rare and neglected diseases, Drug Discov. Today 16 (2011), pp. 298–310.
  • J. Strovel, S.G. Sittampalam, N.P. Coussens, M. Hughes, J. Inglese, A. Kurtz, A. Andalibi, L. Patton, C. Austin, M. Baltezor, M. Beckloff, M. Weingarten, and S. Weir, Early drug discovery and development guidelines: For academic researchers, collaborators, and start-up companies, in assay guidance manual, S.G. Sittampalam, N.P. Coussens, K. Brimacombe, A. Grossman, M. Arkin, D. Auld, C. Austin, J. Baell, B. Bejcek, T.D.Y. Chung, J.L. Dahlin, V. Devanaryan, T. L. Foley, M. Glicksman, M.D. Hall, J.V. Hass, J. Inglese, P.W. Iversen, S.D. Kahl, S.C. Kales, M. Lal-Nag, Z. Li, J. McGee, O. McManus, T. Riss, O.J. Trask, J. R. Weidner, M. Xia, and X. Xu, eds., Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda (MD), 2004, pp. 261–263.
  • N.K. Litterman, M. Rhee, D.C. Swinney, and S. Ekins, Collaboration for rare disease drug discovery research, F1000Research, 3 (2014), pp. 4–7.
  • J.R. Everett, Academic drug discovery: Current status and prospects, Expert Opin. Drug Discov. 10 (2015), pp. 937–944.
  • T. Hammonds, Academic-Pharma drug discovery alliances: Seeking ways to eliminate the valley of death, Future Med. Chem. 7 (2015), pp. 1891–1899.
  • N. Novac, Challenges and opportunities of drug repositioning, Trends Pharmacol. Sci. 34 (2013), pp. 267–272.
  • R. Huang, N. Southall, Y. Wang, A. Yasgar, P. Shinn, A. Jadhav, D.T. Nguyen, and C.P. Austin, The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics, Sci. Transl. Med. 3 (2011), pp. 1–12.
  • Y. Pan, T. Cheng, Y. Wang, and S.H. Bryant, Pathway analysis for drug repositioning based on public database mining, J. Chem. Inf. Model. 54 (2014), pp. 407–418.
  • J. Yang, Z. Li, X. Fan, and Y. Cheng, Drug-disease association and drug-repositioning predictions in complex diseases using causal inference-probabilistic matrix factorization, J. Chem. Inf. Model. 54 (2014), pp. 2562–2569.
  • H. Iwata, R. Sawada, S. Mizutani, and Y. Yamanishi, Systematic drug repositioning for a wide range of diseases with integrative analyses of phenotypic and molecular data, J. Chem. Inf. Model. 55 (2015), pp. 446–459.
  • D. Jang, S. Lee, J. Lee, K. Kim, and D. Lee, Inferring new drug indications using the complementarity between clinical disease signatures and drug effects, J. Biomed. Inform. 59 (2016), pp. 248–257.
  • D. Cavalla, Predictive methods in drug repurposing: Gold mine or just a bigger haystack?, Drug Discov. Today 18 (2013), pp. 523–532.
  • G. Jin and S.T.C. Wong, Toward better drug repositioning: Prioritizing and integrating existing methods into efficient pipelines, Drug Discov. Today 19 (2014), pp. 637–644.
  • P.V. Pogodin, A.A. Lagunin, D.A. Filimonov, and V.V. Poroikov, PASS targets: Ligand-based multi-target computational system based on a public data and naïve Bayes approach, SAR QSAR Environ. Res. 26 (2015), pp. 783–793.
  • A. Lavecchia and C. Cerchia, In silico methods to address polypharmacology: Current status, applications and future perspectives, Drug Discov. Today 21 (2016), pp. 288–298.
  • Institute of Biomedical Chemistry. Way2Drug, Institute of Biomedical Chemistry, Moscow, Russia, 2017. Software available at http://www.way2drug.com/.
  • University of California in San Francisco. Similarity ensemble approach, University of California in San Francisco, San Francisco, CA, USA, 2017. Software available at http://sea.bkslab.org/.
  • Charité-University Medicine Berlin, SuperPred webserver, Charité-University Medicine Berlin, Berlin, Germany, 2017. Software available at http://prediction.charite.de/.
  • Swiss Institute of Bioinformatics, SwissTargetPrediction, Swiss Institute of Bioinformatics, Lausanne, Switzerland, 2017. Software available at http://www.swisstargetprediction.ch/.
  • Technical University of Denmark, ChemProt version 3.0, Technical University of Denmark, Lyngby, Denmark, 2017. Software available at http://potentia.cbs.dtu.dk/ChemProt/.
  • Shanghai Institute of Materia Medica, Chinese Academy of Sciences, TarPred, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 2016. Software available at http://202.127.19.75:5555/.
  • University of Pittsburgh School of Pharmacy, TargetHunter, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA, 2017. Software available at www.cbligand.org/TargetHunter.
  • A. Lagunin, A. Stepanchikova, D. Filimonov, and V. Poroikov, PASS: Prediction of activity spectra for biologically active substances, Bioinformatics 16 (2000), pp. 747–748.
  • M.J. Keiser, B.L. Roth, B.N. Armbruster, P. Ernsberger, J.J. Irwin, and B.K. Shoichet, Relating protein pharmacology by ligand chemistry, Nat. Biotechnol. 25 (2007), pp. 197–206.
  • M. Dunkel, S. Gunther, J. Ahmed, B. Wittig, and R. Preissner, SuperPred: Drug classification and target prediction, Nucleic Acids Res. 36 (2008), pp. W55–W59.
  • X. Liu, Y. Gao, J. Peng, Y. Xu, Y. Wang, N. Zhou, J. Xing, X. Luo, H. Jiang, and M. Zheng, TarPred: A web application for predicting therapeutic and side effect targets of chemical compounds, Bioinformatics 31 (2015), pp. 1–2.
  • X. Liu, Y. Xu, S. Li, Y. Wang, J. Peng, C. Luo, M. Zheng, K. Chen, and H. Jiang, In silico target fishing: Addressing a “Big Data” problem by ligand-based similarity rankings with data fusion, J. Cheminform. 6 (2014), p. 33.
  • D. Gfeller, O. Michielin, and V. Zoete, Shaping the interaction landscape of bioactive molecules, Bioinformatics 29 (2013), pp. 3073–3079.
  • D. Gfeller, A. Grosdidier, M. Wirth, A. Daina, O. Michielin, and V. Zoete, SwissTargetPrediction: A web server for target prediction of bioactive small molecules, Nucleic Acids Res. 42 (2014), pp. W32–W38.
  • S.K. Kjærulff, L. Wich, J. Kringelum, U.P. Jacobsen, I. Kouskoumvekaki, K. Audouze, O. Lund, S. Brunak, T.I. Oprea, and O. Taboureau, ChemProt-2.0: Visual navigation in a disease chemical biology database, Nucleic Acids Res. 41 (2013), pp. D464–D469.
  • D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, A.V. Rudik, D.S. Druzhilovskii, P.V. Pogodin, and V.V. Poroikov, Prediction of the biological activity spectra of organic compounds using the pass online web resource, Chem. Heterocycl. Compd. 50 (2014), pp. 444–457.
  • J. Nickel, B.-O. Gohlke, J. Erehman, P. Banerjee, W.W. Rong, A. Goede, M. Dunkel, and R. Preissner, SuperPred: Update on drug classification and target prediction, Nucleic Acids Res. 42 (2014), pp. 26–31.
  • J. Kringelum, S.K. Kjaerulff, S. Brunak, O. Lund, T.I. Oprea, and O. Taboureau, ChemProt-3.0: A global chemical biology diseases mapping, Database 2016 (2016), pp. 1–7.
  • L. Wang, C. Ma, P. Wipf, H. Liu, W. Su, and X.-Q. Xie, TargetHunter: An in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database, AAPS J. 15 (2013), pp. 395–406.
  • T.I. Oprea, J.E. Bauman, C.G. Bologa, T. Buranda, A. Chigaev, B.S. Edwards, J.W. Jarvik, H.D. Gresham, M.K. Haynes, B. Hjelle, R. Hromas, L. Hudson, D.A. Mackenzie, C.Y. Muller, J.C. Reed, P.C. Simons, Y. Smagley, J. Strouse, Z. Surviladze, T. Thompson, O. Ursu, A. Waller, A Wandinger-Ness, S.S. Winter, Y. Wu, S.M. Young, R.S. Larson, C. Willman, and L.A. Sklar, Drug repurposing from an academic perspective, Drug Discov. Today Ther. Strateg. 8 (2012), pp. 61–69.
  • J. Frearson and P. Wyatt, Drug discovery in academia: The third way?, Expert Opin. Drug Discov. 5 (2010), pp. 909–919.
  • H. Schultz Kirkegaard and F. Valentin, Academic drug discovery centres: The economic and organisational sustainability of an emerging model, Drug Discov. Today 19 (2014), pp. 1699–1710.
  • A.S. Kesselheim, Y.T. Tan, and J. Avorn, The roles of academia, rare diseases, and repurposing in the development of the most transformative drugs, Health Aff. 34 (2015), pp. 286–293.
  • P.I. Arvidsson, K. Sandberg, and K. Forsberg-Nilsson, Open for collaboration: An academic platform for drug discovery and development at SciLifeLab, Drug Discov. Today 21 (2016), pp. 1690–1698.
  • K. Anusevicius, V. Mickevicius, M. Stasevych, V. Zvarych, O. Komarovska-Porokhnyavets, V. Novikov, O. Tarasova, T. Gloriozova, and V. Poroikov, Synthesis and chemoinformatics analysis of N-aryl-β-alanine derivatives, Res. Chem. Intermed. 41 (2015), pp. 7517–7540.
  • M. Luo, X.S. Wang, and A. Tropsha, Comparative analysis of QSAR-based vs. chemical similarity based predictors of GPCRs binding affinity, Mol. Inform. 35 (2016), pp. 36–41.
  • D.S. Druzhilovskiy, A.V. Rudik, D.A. Filimonov, A.A. Lagunin, T.A. Gloriozova, and V.V. Poroikov, Online resources for the prediction of biological activity of organic compounds, Russ. Chem. Bull. 65 (2016), pp. 384–393.
  • Weizmann Institute of Science, GeneCards, Weizmann Institute of Science, Rehovot, Israel, 2017; Software available at http://www.genecards.org/.
  • EMBL-EBI, UniProt, EMBL-EBI, Hinxton, UK, 2017. Software available at http://www.uniprot.org/.
  • EMBL-EBI, ChEMBL, EMBL-EBI, Hinxton, UK, 2017. Software available at https://www.ebi.ac.uk/chembl/.
  • Peter Ertl and Bruno Bienfait, 2017, JSME Homepage; software available at http://peter-ertl.com/jsme/.
  • ChemAxon, ChemAxon, Budapest, Hungary, 2017. Software available at https://www.chemaxon.com/.
  • GVK Biosciences, Drug repurposing portal, GVK Biosciences, Hyderabad, India, 2017. Software available at http://www.drugrepurposingportal.com/index.html.
  • Numedicus, Drug repurposing info, Numedicus, Cambridge, UK, 2017. Software available at http://www.drugrepurposing.info/.
  • International Rare Diseases Research Consortium, Drugnet: A novel drug repurposing webtool – IRDiRC, International Rare Diseases Research Consortium, Paris, France, 2017; software available at http://www.irdirc.org/drugnet-a-novel-drug-repurposing-webtool/.
  • J. Langedijk, A.K. Mantel-Teeuwisse, D.S. Slijkerman, and M.H.D.B. Schutjens, Drug repositioning and repurposing: Terminology and definitions in literature, Drug Discov. Today 20 (2015), pp. 1027–1034.
  • G. Yacila and Y. Sari, Potential therapeutic drugs and methods for the treatment of amyotrophic lateral sclerosis, Curr. Med. Chem. 21 (2014), pp. 3583–3593.
  • M.E. Cudkowicz, S. Titus, M. Kearney, H. Yu, A. Sherman, D. Schoenfeld, D. Hayden, A. Shui, B. Brooks, R. Conwit, D. Felsenstein, D.J. Greenblatt, M. Keroack, J.T. Kissel, R. Miller, J. Rosenfeld, J.D. Rothstein, E. Simpson, N. Tolkoff-Rubin, L. Zinman, and J.M. Shefner, Safety and efficacy of ceftriaxone for amyotrophic lateral sclerosis: A multi-stage, randomised, double-blind, placebo-controlled trial, Lancet Neurol. 13 (2014), pp. 1083–1091.
  • M. Sisignano, M.J. Parnham, and G. Geisslinger, Drug repurposing for the development of novel analgesics, Trends Pharmacol. Sci. 37 (2016), pp. 172–183.
  • H. Fang, S.C. Harris, Z. Liu, G. Zhou, G. Zhang, J. Xu, L. Rosario, P.C. Howard, and W. Tong, FDA drug labeling: Rich resources to facilitate precision medicine, drug safety, and regulatory science, Drug Discov. Today 21 (2016), pp. 1566–1570.
  • U.S. Food & Drug Administration, FDA Online Label Repository, U.S. Food & Drug Administration, Silver Spring, MD, USA, 2017. Software available at https://labels.fda.gov/.
  • National Center for Biotechnology Information, PubMed, National Center for Biotechnology Information, Bethesda, MD, USA, 2017; Software available at https://www.ncbi.nlm.nih.gov/pubmed.
  • Canadian Institute of Health Research, DrugBank, Canadian Institute of Health Research, Ottawa, Canada, 2017. Software available at https://www.drugbank.ca/.
  • Clarivate Analytics, Clarivate analytics integrity, Clarivate Analytics, Philadelphia, PA, USA, 2017. Software available at https://integrity.thomson-pharma.com/.
  • A. Pettersson, E. Schwan, and B. Johansson, New alfentanil composition for the treatment of acute pain, Sweden, WO 2013/164620, 2013.
  • MedicineNet, MedicineNet, MedicineNet, San Clemente, CA, USA, 2017. Software available at https://www.medicinenet.com/script/main/hp.asp.
  • G. Addolorato, F. Caputo, E. Capristo, M. Domenicali, M. Bernardi, L. Janiri, R. Agabio, G. Colombo, G.L. Gessa, and G. Gasbarrini, Baclofen efficacy in reducing alcohol craving and intake: A preliminary double-blind randomized controlled study, Alcohol Alcohol. 37 (2002), pp. 504–508.
  • R.J. Gifford, Bethanidine sulfate—a new antihypertensive agent, JAMA 193 (1965), pp. 901–905.
  • M.B. Bacaner, M.F. Hoey, and M.G. Macres, Suppression of ventricular fibrillation and positive inotropic action of bethanidine sulfate, a chemical analog of bretylium tosylate that is well absorbed orally, Am. J. Cardiol. 49 (1982), pp. 45–55.
  • A. Romaniello, G. Viola, F. Salsano, and E. Rosato, In systemic sclerosis patients, Bosentan is safe and effective for digital ulcer prevention and it seems to attenuate the development of pulmonary arterial hypertension, Rheumatology 53 (2014), pp. 570–571.
  • A.F.G. Slater and A. Cerami, Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites, Nature 355 (1992), pp. 167–169.
  • L.-O. Roy, M.-B. Poirier, and D. Fortin, Chloroquine inhibits the malignant phenotype of glioblastoma partially by suppressing TGF-beta, Invest. New Drugs 33 (2015), pp. 1020–1031.
  • W.-Y. Lee, W.-T. Lee, C.-H. Cheng, K.-C. Chen, C.-M. Chou, C.-H. Chung, M.S. Sun, H.W. Cheng, M.N. Ho, and C.W. Lin, Repositioning antipsychotic chlorpromazine for treating colorectal cancer by inhibiting sirtuin 1, Oncotarget 6 (2015), pp. 27580–27595.
  • S. Lee, D. Walker, and P. Zeitlin, Digitoxin treatment reduces nasal epithelial cytokines in cf subjects, FASEB J. 30 (2016), p. 1071.1.
  • J.P. Vande Griend and S.L. Anderson, Histamine-1 receptor antagonism for treatment of insomnia, J. Am. Pharm. Assoc. 52 (2012), pp. e210–e219.
  • L.R. Howard, ed., Gemcitabine: Pharmacology, clinical uses and potential side effects, 1st ed., Nova Science Pub Inc, Hauppauge, New York, 2014.
  • B. Van Overmeire, I. Follens, S. Hartmann, W.L. Creten, and K.J. Van Acker, Treatment of patent ductus arteriosus with ibuprofen, Arch. Dis. Child. Fetal Neonatal Ed. 76 (1997), pp. F179–F184.
  • R.G. Bloch, A.S. Dooneief, A.S. Buchberg, and S. Spellman, The clinical effect of isoniazid and iproniazid in the treatment of pulmonary tuberculosis, Ann. Intern. Med. 40 (1954), pp. 881–900.
  • R.A. Maxwell and S.B. Eckhardt, Drug discovery: A casebook and analysis, Clifton, NJ: Humana Press, 1990.
  • G.S. Timmins and V. Deretic, Mechanisms of action of isoniazid, Mol. Microbiol. 62 (2006), pp. 1220–1227.
  • J. Kim, J.Y. Tang, R. Gong, J. Kim, J.J. Lee, K.V. Clemons, C.R. Chong, K.S. Chang, M. Fereshteh, D. Gardner, T. Reya, J.O. Liu, E.H. Epstein, D.A. Stevens, and P.A. Beachy, Itraconazole, a commonly used antifungal that inhibits hedgehog pathway activity and cancer growth, Cancer Cell 17 (2010), pp. 388–399.
  • J. Xu, Y. Dang, Y.R. Ren, and J.O. Liu, Cholesterol trafficking is required for mTOR activation in endothelial cells, Proc. Natl. Acad. Sci. U.S.A. 107 (2010), pp. 4764–4769.
  • J.W. Tilley and M.J. Kramer, Aminoadamantane derivatives, Prog. Med. Chem. 18 (1981), pp. 1–44.
  • P.G. Rytik, V.F. Eremin, Z.B. Kvacheva, N.N. Poleschuk, S.A. Popov, H.C. Schroder, M. Bachmann, B.E. Weiler, and W.E. Müller, Susceptibility of primary human glial fibrillary acidic protein- positive brain cells to human immunodeficiency virus infection in vitro: Anti-HIV activity of memantine, AIDS Res. Hum. Retroviruses 7 (1991), pp. 89–95.
  • A. Uygun, A. Kadayifci, A.T. Isik, T. Ozgurtas, S. Deveci, A. Tuzun, Z. Yesilova, M. Gulsen, and K. Dagalp, Metformin in the treatment of patients with non-alcoholic steatohepatitis, Aliment. Pharmacol. Ther. 19 (2004), pp. 537–544.
  • M. Zakikhani, R. Dowling, I.G. Fantus, N. Sonenberg, and M. Pollak, Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells, Cancer Res. 66 (2006), pp. 10269–10273.
  • J.L. Wright and J.L. Stanford, Metformin use and prostate cancer in Caucasian men: Results from a population-based case-control study, Cancer Causes Control 20 (2009), pp. 1617–1622.
  • T.P.C. Dorlo, M. Balasegaram, J.H. Beijnen, and P.J. de Vries, Miltefosine: A review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis, J. Antimicrob. Chemother. 67 (2012), pp. 2576–2597.
  • P.H. Gordon, D.H. Moore, D.F. Gelinas, C. Qualls, M.E. Meister, J. Werner, M. Mendoza, J. Mass, G. Kushner, and R.G. Miller, Placebo-controlled phase I/II studies of minocycline in amyotrophic lateral sclerosis, Neurology 62 (2004), pp. 1845–1847.
  • S. Zhu, I.G. Stavrovskaya, M. Drozda, B.Y.S. Kim, V. Ona, M. Li, S. Sarang, A.S. Liu, D.M. Hartley, D.C. Wu, S. Gullans, R.J. Ferrante, S. Przedborski, B.S. Kristal, and R.M. Friedlander, Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice, Nature 417 (2002), pp. 74–78.
  • R.M. Friedlander, M. Chen, V.O. Ona, M. Li, R.J. Ferrante, K.B. Fink, S. Zhu, J. Bian, L. Guo, L.A. Farrell, S.M. Hersch, W. Hobbs, J.P. Vonsattel, J.H. Cha, and R.M. Friedlander, Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease, Nat. Med. 6 (2000), pp. 797–801.
  • C. Herdeg, M. Oberhoff, D.I. Siegel-Axel, A. Baumbach, A. Blattner, A. Küttner, S. Schröder, and K.R. Karsch, Paclitaxel: A chemotherapeutic agent for prevention of restenosis? Experimental studies in vitro and in vivo, Z. Kardiol. 89 (2000), pp. 390–397.
  • J.N. Poynter, S.B. Gruber, P.D.R. Higgins, R. Almog, J.D. Bonner, H.S. Rennert, M. Low, J.K. Greenson, and G. Rennert, Statins and the risk of colorectal cancer, N. Engl. J. Med. 352 (2005), pp. 2184–2192.
  • J.H. Kim and A.R. Scialli, Thalidomide: The tragedy of birth defects and the effective treatment of disease, Toxicol. Sci. 122 (2011), pp. 1–6.
  • D. Fourches, E. Muratov, and A. Tropsha, Trust, but verify II: A practical guide to chemogenomics data curation, J. Chem. Inf. Model. 56 (2016), pp. 1243–1252.
  • K. Mansouri, C.M. Grulke, A.M. Richard, R.S. Judson, and A.J. Williams, An automated curation procedure for addressing chemical errors and inconsistencies in publicdatasets used in QSAR modelling, SAR QSAR Environ. Res. 27 (2016), pp. 911–937.
  • H.A.M. Mucke, Drug repurposing patent applications April–June 2016, Assay Drug Dev. Technol. 14 (2016), pp. 573–576.
  • H.A.M. Mucke, Drug repurposing patent applications July–September 2016, Assay Drug Dev. Technol. 14 (2016), pp. 577–582.
  • H.A.M. Mucke, Drug repurposing patent applications October–December 2016, Assay Drug Dev. Technol. 15 (2017), pp. 120–126.
  • H.A.M. Mucke, Drug repurposing patent applications January–March 2017, Assay Drug Dev. Technol. 15 (2017), pp. 127–132.
  • Y.C. Martin, J.L. Kofron, and L.M. Traphagen, Do structurally similar molecules have similar biological activity?, J. Med. Chem. 45 (2002), pp. 4350–4358.
  • V. Poroikov, D. Akimov, E. Shabelnikova, and D. Filimonov, Top 200 medicines: Can new actions be discovered through computer-aided prediction?, SAR QSAR Environ. Res. 12 (2001), pp. 327–344.
  • M.J. Mancino, J. McGaugh, M.P. Chopra, J.B. Guise, C. Cargile, D.K. Williams, J. Thostenson, T.R. Kosten, N. Sanders, and A. Oliveto, Clinical efficacy of sertraline alone and augmented with gabapentin in recently abstinent cocaine-dependent patients with depressive symptoms, J. Clin. Psychopharmacol. 34 (2014), pp. 234–239.
  • K. Takara, M. Matsubara, K. Yamamoto, T. Minegaki, S. Takegami, M. Takahashi, T. Yokoyama, and K. Okumura, Differential effects of calcium antagonists on ABCG2/BCRP-mediated drug resistance and transport in SN-38-resistant HeLa cells, Mol. Med. Rep. 5 (2012), pp. 603–609.
  • K.D. Rainsford, H. Omar, A. Ashraf, A.T. Hewson, R.A.D. Bunning, R. Rishiraj, P. Shepherd, and R.W. Seabrook, Recent pharmacodynamic and pharmacokinetic findings on oxaprozin, Inflammopharmacology 10 (2002), pp. 185–239.
  • Q. Shi, J. Abusarah, G. Baroudi, J.C. Fernandes, H. Fahmi, and M. Benderdour, Ramipril attenuates lipid peroxidation and cardiac fibrosis in an experimental model of rheumatoid arthritis, Arthritis Res. Ther. 14 (2012), p. R223.
  • S.A. Kryzhanovskii, R.M. Salimov, A.A. Lagunin, D.A. Filimonov, T.A. Gloriozova, and V.V. Poroikov, Nootropic action of some antihypertensive drugs: Computer predicting and experimental testing, Pharm. Chem. J. 45 (2012), pp. 605–611.
  • Y. Gao, R. O’Caoimh, L. Healy, D.M. Kerins, J. Eustace, G. Guyatt, D. Sammon, and D.W. Molloy, Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia, BMJ Open 3 (2013), pp. 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.