160
Views
3
CrossRef citations to date
0
Altmetric
Special Issue: 9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2017) - Part 2. Guest Editors: A.K. Saxena and M. Saxena

Expert judgment based multicriteria decision models to assess the risk of pesticides on reproduction failures of grey partridgeFootnote

, , &
Pages 889-911 | Received 23 Oct 2017, Accepted 04 Nov 2017, Published online: 05 Dec 2017

References

  • Eurostat, Agri-environmental indicator - consumption of pesticides. Available at http://ec.europa.eu/eurostat/statistics-explained/index.php/Agri-environmental_indicator_-_consumption_of_pesticides#Data_used_and_methodology.
  • P. Pimentel, Environmental and economic costs of the application of pesticides primarily in the United States, Environ. Develop. Sustain. 7 (2005), pp. 229–252.
  • K.L.E. Kaiser and J. Devillers, Ecotoxicity of Chemicals to Photobacterium phosphoreum, Gordon and Breach Science Publishers, Reading, 1994.
  • J. Devillers and J.M. Exbrayat, Ecotoxicity of Chemicals to Amphibians, Gordon and Breach Science Publishers, Reading, 1992.
  • W.W. Johnson and M.T. Finley, Handbook of Acute Toxicity of Chemicals to Fish and Aquatic Invertebrates, United States Department of the Interior Fish and Wildlife Service, Resource Publication 137, Washington, 1980.
  • J. Stanley and G. Preetha, Pesticide Toxicity to Non-target Organisms: Exposure, Toxicity and Risk Assessment Methodologies, Springer, Dordrecht, 2016.
  • M.A. Beketov, B.J. Kefford, R.B. Schäfer, and M. Liess, Pesticides reduce regional biodiversity of stream invertebrates, Proc. Nat. Acad. Sci. USA 110 (2013), pp. 11039–11043.
  • A. Decourtye, J. Devillers, S. Cluzeau, M. Charreton, and M.H. Pham-Delègue, Effects of imidacloprid and deltamethrin on associative learning in honeybees under semi-field and laboratory conditions, Ecotoxicol. Environ. Safety 57 (2004), pp. 410–419.
  • A. Decourtye, C. Armengaud, M. Renou, J. Devillers, S. Cluzeau, M. Gauthier, and M.H. Pham-Delègue, Imidacloprid impairs memory and brain metabolism in the honeybee (Apis mellifera L.), Pestic. Biochem. Physiol. 78 (2004), pp. 83–92.
  • J. Devillers and M.H. Pham-Delègue, Honey Bees: Estimating the Environmental Impact of Chemicals, Taylor & Francis, London, 2002.
  • D.M. Fry, Reproductive effects in birds exposed to pesticides and industrial chemicals, Environ. Health Perspect. 103 (1995), pp. 165–171.
  • F. Geiger, J. Bengtsson, F. Berendse, W.W. Weisser, M. Emmerson, M.B. Morales, P. Ceryngier, J. Liira, T. Tscharntke, C. Winqvist, S. Eggers, R. Bommarco, T. Pärt, V. Bretagnolle, M. Plantegenest, L.W. Clement, C. Dennis, C. Palmer, J.J. Oñate, I. Guerrero, V. Hawro, T. Aavik, C. Thies, A. Flohre, S. Hänke, C. Fischer, P.W. Goedhart, and P. Inchausti, Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland, Basic Appl. Ecol. 11 (2010), pp. 97–105.
  • C.A. Hallmann, R.P.B. Foppen, C.A.M. van Turnhout, H. de Kroon, and E. Jongejans, Declines in insectivorous birds are associated with high neonicotinoid concentrations, Nature 511 (2014), pp. 341–343.
  • E.W. Schafer, The acute oral toxicity of 369 pesticidal, pharmaceutical and other chemicals to wild birds, Toxicol. Appl. Pharmacol. 21 (1972), pp. 315–330.
  • E.W. Schafer, W.A. Bowles, and J. Hurlbut, The acute oral toxicity, repellency, and hazard potential of 998 chemicals to one or more species of wild and domestic birds, Arch. Environ. Contam. Toxicol. 12 (1983), pp. 355–382.
  • J. Devillers, Ecotoxicology Modeling, Springer, New York, 2009.
  • J. Devillers, Methods for building QSAR, in Computational Toxicology, Vol. II, B. Reisfeld and A.N. Mayeno, eds., Humana Press, New York, 2012, pp. 3–27.
  • K. Mansouri, C.M. Grulke, A.M. Richard, R.S. Judson, and A.J. Williams, An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling, SAR QSAR Environ. Res. 27 (2016), pp. 911–937.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, Molec. Inf. 26 (2007), pp. 694–701.
  • U. Norinder, A. Rybacka, and P.L. Andersson, Conformal prediction to define applicability domain – A case study on predicting ER and AR binding, SAR QSAR Environ. Res. 27 (2016), pp. 303–316.
  • T. Hanser, C. Barber, J.F. Marchaland, and S. Werner, Applicability domain: Towards a more formal definition, SAR QSAR Environ. Res. 27 (2016), pp. 865–881.
  • K. Roy and I. Mitra, On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design, Comb. Chem. High Throughput Screen. 14 (2011), pp. 450–474.
  • A. Furuhama, K. Hasunuma, T.I. Hayashi, and N. Tatarazako, Predicting algal growth inhibition toxicity: Three-step strategy using structural and physicochemical properties, SAR QSAR Environ. Res. 27 (2016), pp. 343–362.
  • T.M. Nolte, W.J.G.M. Peijnenburg, A.J. Hendriks, and D. van de Meent, Quantitative structure–activity relationships for green algae growth inhibition by polymer particles, Chemosphere 179 (2017), pp. 49–56.
  • J. Devillers, Linear versus nonlinear QSAR modelling of the toxicity of phenol derivatives to Tetrahymena pyriformis, SAR QSAR Environ. Res. 15 (2004), pp. 237–249.
  • Y.Y. Ren, L.C. Zhou, L. Yang, P.Y. Liu, B.W. Zhao, and H.X. Liu, Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis, SAR QSAR Environ. Res. 27 (2016), pp. 721–746.
  • J. Devillers, P. Chambon, D. Zakarya, M. Chastrette, and R. Chambon, A predictive structure–toxicity model with Daphnia magna, Chemosphere 16 (1987), pp. 1149–1163.
  • C.W. Cho and Y.S. Yun, Correlating toxicological effects of ionic liquids on Daphnia magna with in silico calculated linear free energy relationship descriptors, Chemosphere 152 (2016), pp. 207–213.
  • J. Devillers, Prediction of toxicity of organophosphorus insecticides against the midge, Chironomus riparius, via a QSAR neural network model integrating environmental variables, Toxicol. Methods 10 (2000), pp. 69–79.
  • T.M. Martin, D.M. Young, C.R. Lilavois, and M.G. Barron, Comparison of global and mode of action-based models for aquatic toxicity, SAR QSAR Environ. Res. 26 (2015), pp. 245–262.
  • J. Baas, D. Spurgeon, and M. Broerse, A simple mechanistic model to interpret the effects of narcotics, SAR QSAR Environ. Res. 26 (2015), pp. 165–180.
  • C.I. Cappelli, A. Cassano, A. Golbamaki, Y. Moggio, A. Lombardo, M. Colafranceschi, and E. Benfenati, Assessment of in silico models for acute aquatic toxicity towards fish under REACH regulation, SAR QSAR Environ. Res. 26 (2015), pp. 977–999.
  • X. Wu, Q. Zhang, and J. Hu, QSAR study of the acute toxicity to fathead minnow based on a large dataset, SAR QSAR Environ. Res. 27 (2016), pp. 147–164.
  • M. Cassotti, D. Ballabio, R. Todeschini, and V. Consonni, A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas), SAR QSAR Environ. Res. 26 (2015), pp. 217–243.
  • V. Drgan, Š. Župerl, M. Vračko, F. Como, and M. Novič, Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm, SAR QSAR Environ. Res. 27 (2016), pp. 501–519.
  • A.A. Toropov and E. Benfenati, QSAR models of quail dietary toxicity based on the graph of atomic orbitals, Bioorg. Med. Chem. Lett. 16 (2006), pp. 1941–1943.
  • P. Mazzatorta, M.T.D. Cronin, and E. Benfenati, A QSAR study of avian oral toxicity using support vector machines and genetic algorithms, QSAR Comb. Sci. 25 (2006), pp. 616–628.
  • N. Basant, S. Gupta, and K.P. Singh, Predicting toxicities of diverse chemical pesticides in multiple avian species using tree-based QSAR approaches for regulatory purposes, J. Chem. Inf. Model. 55 (2015), pp. 1337–1348.
  • C. Zhang, F. Cheng, L. Sun, S. Zhuang, W. Li, G. Liu, P.W. Lee, and Y. Tang, In silico prediction of chemical toxicity on avian species using chemical category approaches, Chemosphere 122 (2015), pp. 280–287.
  • N.B. Vyas, J.W. Spann, G.S. Hulse, S.L. Borges, R.S. Bennett, M. Torrez, B.I. Williams, and R. Leffel, Field evaluation of an avian risk assessment model, Environ. Toxicol. Chem. 25 (2006), pp. 1762–1771.
  • J.P. Sullivan and J.D. Wisk, Using the terrestrial residue exposure (T-REX) model to assess threatened and endangered bird exposure to and risk from pesticides, Integr. Environ. Assess. Manag. 9 (2013), pp. 480–495.
  • M. Etterson, K. Garber, and E. Odenkirchen, Mechanistic modeling of insecticide risks to breeding birds in North American agroecosystems, PLoS ONE 12 (2017), p. e0176998.
  • M.A. Etterson, S.N. Ellis-Felege, D. Evers, G. Gauthier, J.A. Grzybowski, B.J. Mattsson, L.R. Nagy, B.J. Olsen, C.M. Pease, M.P. van der Burg, and A. Potvien, Modeling fecundity in birds: Conceptual overview, current models, and considerations for future developments, Ecol. Model. 222 (2011), pp. 2178–2190.
  • R.S. Bennett and M.A. Etterson, Incorporating results of avian toxicity tests into a model of annual reproductive success, Integr. Environ. Assess. Manag. 4 (2007), pp. 498–507.
  • M.A. Etterson and R.S. Bennett, Quantifying the effects of pesticide exposure on annual reproductive success of birds, Integr. Environ. Assess. Manag. 9 (2013), pp. 590–599.
  • R.S. Bennett and M.A. Etterson, Selecting surrogate endpoints for estimating pesticide effects on avian reproductive success, Integr. Environ. Assess. Manag. 9 (2013), pp. 600–609.
  • C.A. Engelman, W.E. Grant, M.A. Mora, and M. Woodin, Modelling effects of chemical exposure on birds wintering in agricultural landscapes: The western burrowing owl (Athene cunicularia hypugaea) as a case study, Ecol. Model. 224 (2012), pp. 90–102.
  • J. Devillers, H. Devillers, A. Decourtye, and P. Aupinel, Internet resources for agent-based modelling, SAR QSAR Environ. Res. 21 (2010), pp. 337–350.
  • H. Devillers, J.R. Lobry, and F. Menu, An agent-based model for predicting the prevalence of Trypanosoma cruzi I and II in their host and vector populations, J. Theor. Biol. 255 (2008), pp. 307–315.
  • J. Devillers and H. Devillers, Population dynamics models for assessing the endocrine disruption potential of juvenile hormone analogues on nontarget species, in Juvenile Hormones and Juvenoids. Modeling Biological Effects and Environmental Fate, J. Devillers, ed., CRC Press, Boca Raton, FL, 2013, pp. 115–132.
  • C.J. Topping and P. Odderskaer, Modeling the influence of temporal and spatial factors on the assessment of impacts of pesticides on skylarks, Environ. Toxicol. Chem. 23 (2004), pp. 509–520.
  • D.A. Ratcliffe, Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds, J. Appl. Ecol. 7 (1970), pp. 67–115.
  • J.L. Lincer, DDE-induced eggshell-thinning in the American kestrel: A comparison of the field situation and laboratory results, J. Appl. Ecol. 12 (1975), pp. 781–793.
  • D. Herzke, R. Kallenborn, and T. Nygard, Organochlorines in egg samples from Norwegian birds of prey: Congener-, isomer- and enantiomer specific considerations, Sci. Total Environ. 291 (2002), pp. 59–71.
  • A. Jagannath, R.F. Shore, L.A. Walker, P.N. Ferns, and A.G. Gosler, Eggshell pigmentation indicates pesticide contamination, J. Appl. Ecol. 45 (2008), pp. 133–140.
  • S. Huber, N.A. Warner, T. Nygård, M. Remberger, M. Harju, H.T. Uggerud, L. Kaj, and L. Hanssen, A broad cocktail of environmental pollutants found in eggs of three seabird species from remote colonies in Norway, Environ. Toxicol. Chem. 34 (2015), pp. 1296–1308.
  • J. Devillers, Endocrine Disruption Modeling, CRC Press, Boca Raton, FL, 2009.
  • C. Carere, D. Costantini, A. Sorace, D. Santucci, and E. Alleva, Bird populations as sentinels of endocrine disrupting chemicals, Ann. Ist. Super. Sanita 46 (2010), pp. 81–88.
  • M.A. Ottinger and K.M. Dean, Neuroendocrine impacts of endocrine-disrupting chemicals in birds: Life stage and species sensitivities, J. Toxicol. Environ. Health, Part B: Crit. Rev. 14 (2011), pp. 413–422.
  • A.K. Saxena, J. Devillers, S.S. Bhunia, and E. Bro, Modelling inhibition of avian aromatase by azole pesticides, SAR QSAR Environ. Res. 26 (2015), pp. 757–782.
  • D.P.J. Kuijper, E. Oosterveld, and E. Wymenga, Decline and potential recovery of the European grey partridge (Perdix perdix) population—A review, Eur. J. Wildl. Res. 55 (2009), pp. 455–463.
  • M. Vaillant, J.M. Jouany, and J. Devillers, A multicriteria estimation of the environmental risk of chemicals with the SIRIS method, Toxicol. Model. 1 (1995), pp. 57–72.
  • E. Bro, F. Millot, R. Delorme, C. Polvé, E. Mangin, A. Godard, F. Tardif, C. Gouache, I. Sion, X. Brault, D. Durlin, D. Gest, T. Moret, and R. Tabourel, PeGASE, bilan synthétique d'une étude perdrix grise «population-environnement», Faune Sauv. 298 (2013), pp. 17–48.
  • E. Bro, F. Millot, A. Decors, and J. Devillers, Quantification of potential exposure of grey partridge (Perdix perdix) to pesticide active substances in farmlands, Sci. Total Environ. 521–522 (2015), pp. 315–325.
  • J. Devillers and W. Karcher, Applied Multivariate Analysis in SAR and Environmental Studies, Kluwer Academic Publishers, Dordrecht, 1991.
  • P.H. Howard, Handbook of Environmental Fate and Exposure Data for Organic Chemicals, Vol. III, Lewis Publishers, Chelsea, MI, Pesticides, 1991.
  • J. Sangster, LOGKOW Databank. A Databank of Evaluated Octanol-Water Partition Coefficients (log P) on Microcomputer Diskette, Sangster Research Laboratory, Montreal, Canada, 1994.
  • C. Tomlin, The Pesticide Manual, 10th ed., The Royal Society of Chemistry & The British Crop Protection Council, Farnham, 1994.
  • C. Hansch, A. Leo, and D. Hoekman, Exploring QSAR. Hydrophobic, Electronic, and Steric Constants, ACS Professional Reference Book, American Chemical Society, Washington, DC, 1995.
  • K.C. Ma, D. Mackay, S.C. Lee, and W.Y. Shiu, Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed., CRC Press, Boca Raton, FL, 2006.
  • W.M. Meylan and P.H. Howard, Atom/fragment contribution method for estimating octanol–water partition coefficients, J. Pharm. Sci. 84 (1995), pp. 83–92.
  • E. Benfenati, log P (version 1.1.2), Ready Biodegradability Model (version 1.0.8), Developmental Toxicity Classification Model version 2.1.6, Carcinogenicity Classification Model version 2.1.8, Vega program, Istituto di Ricerche Farmacologiche Mario Negri, 2013.
  • J. Devillers, D. Domine, C. Guillon, and W. Karcher, Simulating lipophilicity of organic molecules with a back-propagation neural network, J. Pharm. Sci. 87 (1998), pp. 1086–1090.
  • J. Devillers, Calculation of octanol/water partition coefficients for pesticides. A comparative study, SAR QSAR Environ. Res. 10 (1999), pp. 249–262.
  • A.K. Ghose and G.M. Crippen, Atomic physicochemical parameters for three-dimensional structure-directed quantitative structure–activity relationships I. Partition coefficients as a measure of hydrophobicity, J. Comput. Chem. 7 (1986), pp. 565–577.
  • V.N. Viswanadhan, A.K. Ghose, G.R. Revankar, and R.K. Robins, Atomic physicochemical parameters for three dimensional structure directed quantitative structure–activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics, J. Chem. Inf. Comput. Sci. 29 (1989), pp. 163–172.
  • I. Moriguchi, S. Hirono, Q. Liu, I. Nakagome, and Y. Matsushita, Simple method of calculating octanol/water partition coefficient, Chem. Pharm. Bull. 40 (1992), pp. 127–130.
  • W.J. Lyman, W.F. Reehl, and D.H. Rosenblatt, Handbook of Chemical Property Estimation Methods, American Chemical Society, Washington, DC, 1990.
  • R.S. Boethling, P.H. Howard, W. Meylan, W. Stiteler, J. Beaumann, and N. Tirado, Group contribution method for predicting probability and rate of aerobic biodegradation, Environ. Sci. Technol. 28 (1994), pp. 459–65.
  • R.S. Boethling and J. Costanza, Domain of EPI suite biotransformation models, SAR QSAR Environ. Res. 21 (2010), pp. 415–443.
  • S. Raimondo, P. Mineau, and M.G. Barron, Estimation of chemical toxicity to wildlife species using interspecies correlation models, Environ. Sci. Technol. 41 (2007), pp. 5888–5894.
  • S. Raimondo, C.R. Jackson, and M.G. Barron, Web-based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual. Version 3.2, EPA/600/R-12/603, US Environmental Protection Agency, Office of Research and Development, Gulf Ecology Division. Gulf Breeze, FL, 2013.
  • R.H. Hudson, R.K. Tucker, and M.A. Haegle, Handbook of Toxicity of Pesticides to Wildlife, US Department of the Interior, Fish and Wildlife Service, Publication 153, Washington DC, 1984.
  • H. Kojima, E. Katsura, S. Takeuchi, K. Niiyama, and K. Kobayashi, Screening for estrogen and androgen receptor activities in 200 pesticides by in vitro reporter gene assays using Chinese hamster ovary cells, Environ. Health Perspect. 112 (2004), pp. 524–531.
  • H. Kojima, S. Takeuchi, and T. Nagai, Endocrine-disrupting potential of pesticides via nuclear receptors and aryl hydrocarbon receptor, J. Health Sci. 56 (2010), pp. 374–386.
  • H. Kojima, F. Sata, S. Takeuchi, T. Sueyoshi, and T. Nagai, Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays, Toxicology 280 (2011), pp. 77–87.
  • W. Mnif, A. Ibn Hadj Hassine, A. Bouaziz, A. Bartegi, O. Thomas, and B. Roig, Effect of endocrine disruptor pesticides: A review, Int. J. Environ. Res. Public Health 8 (2011), pp. 2265–2303.
  • F. Orton, E. Rosivatz, M. Scholze, and A. Kortenkamp, Widely used pesticides with previously unknown endocrine activity revealed as in vitro antiandrogens, Environ. Health Perspect. 119 (2011), pp. 794–800.
  • U. Hass, J. Boberg, M. Axelstad, L.K. Isling, S. Christiansen, P.R. Jacobsen, K. Mandrup, A.M. Vinggaard, C. Taxvig, M.E. Poulsen, S.S. Herrmann, B.H. Jensen, A. Pedersen, L.H. Clemmensen, and B.K. Ersbøl, Developmental Toxicity Effects in Experimental Animals after Mixed Exposure to Endocrine Disrupting Pesticides, Danish Environmental Protection Agency, Pesticides Research No. 141, København, Denmark, 2012.
  • E. Nielsen, P. Nørhede, J. Boberg, L.K. Isling, S. Kroghsbo, N. Hadrup, L. Bredsdorff, A. Mortensen, and J.C. Larsen, Identification of Cumulative Assessment Groups of Pesticides, Technical University of Denmark, Mørkhøj, Denmark, 2012.
  • S. De Coster and N. van Larebeke, Endocrine-disrupting chemicals: Associated disorders and mechanisms of action, J. Environ. Pub, Health (2012), pp. 1–52.
  • P. Marx-Stoelting, L. Niemann, V. Ritz, B. Ulbrich, A. Gall, K.I. Hirsch-Ernst, R. Pfeil, and R. Solecki, Assessment of three approaches for regulatory decision making on pesticides with endocrine disrupting properties, Regul. Toxicol. Pharmacol. 70 (2014), pp. 590–604.
  • K. Kolšek, J. Mavri, M. Sollner Dolenc, S. Gobec, and S. Turk, Endocrine disruptome – An open source prediction tool for assessing endocrine disruption potential through nuclear receptor binding, J. Chem. Inf. Model. 54 (2014), pp. 1254–1267.
  • J. Devillers, E. Bro, and F. Millot, Prediction of the endocrine disruption profile of pesticides, SAR QSAR Environ. Res. 26 (2015), pp. 831–852.
  • A. Plošnik, M. Vračko, and J. Mavri, Computational study of binding affinity to nuclear receptors for some cosmetic ingredients, Chemosphere 135 (2015), pp. 325–334.
  • R. Vincent, F. Bonthoux, and C. Lamoise, Evaluation du risque chimique. Hiérarchisation des risques potentiels, Cahiers Notes Doc. Hyg. Sec. Travail 178 (2000), pp. 29–34.
  • M. Guerbet and J.M. Jouany, Value of the SIRIS method for the classification of a series of 90 chemicals according to risk for the aquatic environment, Environ. Impact. Assess. Rev. 22 (2002), pp. 377–391.
  • P. Pandard, J. Devillers, A.M. Charissou, V. Poulsen, M.J. Jourdain, J.F. Férard, C. Grand, and A. Bispo, Selecting a battery of bioassays for ecotoxicological characterization of wastes, Sci. Total Environ. 363 (2006), pp. 114–125.
  • J. Devillers, P. Pandard, and A.M. Charissou, Sélection multicritère de bioindicateurs de la qualité des sols, Etude Gestion Sols 16 (2009), pp. 233–242.
  • J. Devillers, P. Pandard, E. Thybaud, and A. Merle, Interspecies correlations for predicting the acute toxicity of xenobiotics, in Ecotoxicology Modeling, J. Devillers, ed., Springer, New York, 2009, pp. 85–115.
  • J. Devillers, P. Pandard, A.M. Charissou, and A. Bispo, Use of multicriteria analysis for selecting ecotoxicity tests, in Ecotoxicology Modeling, J. Devillers, ed., Springer, New York, 2009, pp. 117–143.
  • J. Devillers, L. Lagadic, O. Yamada, F. Darriet, R. Delorme, X. Deparis, J.P. Jaeg, C. Lagneau, B. Lapied, F. Quiniou, and A. Yébakima, Use of multicriteria analysis for selecting candidate insecticides for vector control, in Juvenile Hormones and Juvenoids. Modeling Biological Effects and Environmental Fate, J. Devillers, ed., CRC Press, Boca Raton, FL, 2013, pp. 347–381.
  • J. Devillers, C. Lagneau, A. Lattes, J.C. Garrigues, M.M. Clémenté, and A. Yébakima, In silico models for predicting vector control chemicals targeting Aedes aegypti, SAR QSAR Environ. Res. 25 (2014), pp. 805–835.
  • J.B. Unsworth, R.D. Wauchope, A.W. Klein, E. Dorn, B. Zeeh, S.M. Yeh, M. Akerblim, K.D. Racke, and B. Rubin, Significance of long range transport of pesticides in the atmosphere, Pure Appl. Chem. 71 (1999), pp. 1359–1383.
  • E. Bro, J. Devillers, F. Millot, and A. Decors, Residues of plant protection products in grey partridge eggs in French cereal ecosystems, Environ. Sci. Pollut. Res. 23 (2016), pp. 9559–9573.
  • E. Bro and J. Devillers, Modélisation rétrospective et prospective des accidents de ponte chez la perdrix grise (Perdix perdix) en plaine de grande culture en relation avec l’usage agricole de produits phytopharmaceutiques, Programme Evaluation et réduction des risques liés à l’utilisation des Pesticides APR 2011 « Changer les pratiques agricoles pour préserver les services écosystémiques », convention ONEMA-ONCFS n°2012/XX, 2015.
  • J. Devillers, R. Farret, P. Girardin, J.L. Rivière, and G. Soulas, Indicateurs pour Evaluer les Risques Liés à l’Utilisation des Pesticides, Lavoisier, Paris, 2005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.