210
Views
12
CrossRef citations to date
0
Altmetric
9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2017) - Part 4. Guest Editors: A.K. Saxena and M. Saxena

Docking assisted design of novel 4-adamantanyl-2-thiazolylimino-5-arylidene-4-thiazolidinones as potent NSAIDsFootnote$

, , , &
Pages 83-101 | Received 24 Oct 2017, Accepted 23 Nov 2017, Published online: 04 Jan 2018

References

  • J.C. Lombardino, Nonsteroidal Antiinflammatory Drugs, Wiley-Interscience, John Wiley & Sons, New York, NY, 1983.
  • C.J. Smith, Y. Zhang, C.M. Koboldt, J. Muhammad, B.S. Zweifel, A. Shaffer, J.J. Talley, J.L. Masferre, K. Seibert, and P.C. Iskson, Pharmacological analysis of cycloxygenase-1 in inflammation, Proc. Natl Acad. Sci. USA 95 (1998), pp. 1313–1318.
  • C.J. Hawkey, COX-2 inhibitors, Lancet 353 (1999), pp. 307–331.
  • J.Y. Jouzeau, B. Terlain, A. Abid, E. Nedelec, and P. Netter, Cyclooxygenase isoenzymes. How recent findings affect thinking about nonsteroidal anti-inflammatory drugs, Drugs 53 (1997), pp. 563–582.
  • J.Y. Fu, J.L. Masferrer, K. Seibert, A. Raz, and P. Needleman, The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes, J. Biol. Chem. 265 (1990), pp. 16737–16740.
  • S.G. Wendell, C. Baffi, and F. Holguin, Fatty acids, inflammation, and asthma, J. Clin. Immunol. 133 (2014), pp. 1255–1264.
  • M.G. Belvisi, M. Saunders, M. Yacoub, and J.A. Mitchell, Expression of cyclo-oxygenase-2 in human airway smooth muscle is associated with profound reductions in cell growth, Br. J. Pharmacol. 125 (1998), pp. 1102–1108.
  • J. Martel-Pelletier, D. Lajeunesse, P. Reboul, and J.-P. Pelletier, Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs, Ann. Rheum. Dis. 62 (2003), pp. 501–509.
  • A. Sala, G.M. Aliev, G. Rossoni, F. Berti, C. Buccellati, G. Burnstock, G. Folco, and J. Maclouf, Morphological and functional changes of coronary vasculature caused by transcellular biosynthesis of sulfidopeptide leukotrienes in isolated heart of rabbit, Blood 87 (1996), pp. 1824–1832.
  • B.M. Peskar, Role of leukotriene C4 in mucosal damage caused by necrotizing agents and indomethacin in the rat stomach, Gastroenterology 100 (1991), pp. 619–626.
  • Y.B. Park, C.W. Ahn, H.K. Choi, S.H. Lee, B.H. In, H.C. Lee, C.M. Nam, and S.K. Lee, Atherosclerosis in rheumatoid arthritis: Morphologic evidence obtained by carotid ultrasound, Arthritis Rheum. 46 (2002), pp. 1714–1719.
  • X. de Leval, F. Julemont, J. Delarge, B. Pirotte, and J.-M. Dogne, New trends in dual 5-LOX/COX inhibition, Curr. Med. Chem. 9 (2002), pp. 941–962.
  • M. Bayes, X. Rabasseda, and J.R. Prous, Gateways to clinical trials, Methods Find. Exp. Clin. Pharmacol. 24 (2002), pp. 525–551.
  • P.N. Rao, Q.H. Chen, and E.E. Knaus, Synthesis and structure-activity relationship studies of 1,3-diarylprop-2-yn-1-ones: Dual inhibitors of cyclooxygenases and lipoxygenases, J. Med. Chem. 49 (2006), pp. 1668–1683.
  • G.N. Ziakas, E.A. Rekka, A.M. Gavalas, P.T. Eleftheriou, and P.N. Kourounakis, New analogues of butylated hydroxytoluene as anti-inflammatory and antioxidant agents, Bioorg. Med. Chem. 14 (2006), pp. 5616–5624.
  • G.N. Ziakas, E.A. Rekka, A.M. Gavalas, P.T. Eleftheriou, K.S. Tsiakitzis, and P.N. Kourounakis, Nitric oxide releasing derivatives of tolfenamic acid with anti-inflammatory activity and safe gastrointestinal profile, Bioorg. Med. Chem. 13 (2005), pp. 6485–6492.
  • C. Kharbanda, M.S. Alam, H. Hamid, K. Javed, S. Bano, A. Dhulap, Y.S. Ali, S. Nazreen, and S. Haider, Synthesis and evaluation of pyrazolines bearing benzothiazole as anti-inflammatory agents, Bioorg. Med. Chem. 21 (2014), pp. 5804–5812.
  • P. Patel, J. Pillai, N. Darji, and B. Patel, Recent advance in anti inflammatory activity of benzothiazole derivatives, Int. J. Drug Res. Tech. 22 (2012), pp. 170–176.
  • V. Kumar, S. Sharma, and A. Husain, A. Synthesis and in vivo anti-inflammatory and analgesic activities of oxadiazoles clubbed with benzothiazole nucleus, ICPJ 4 (2015), pp. 457–461.
  • A.F.S. Rostom, I.M. El-Ashmawy, H.A. Abd El Razik, M.H. Badr, and H.M.A. Ashour, Design and synthesis of some thiazolyl and thiadiazolyl derivatives of antipyrine as potential non-acidic anti-inflammatory, analgesic and antimicrobial agents, Bioorg. Med. Chem. 17 (2009), pp. 882–895.
  • A.D. Taranalli, A.R. Bhat, S. Srinivas, and E. Saravanan, Antiinflammatory, analgesic and antipyretic activity of certain thiazolidinones, Indian J. Pharm. Sci. 70 (2008), pp. 159–164.
  • A.H. Abdelazeem, M.T. El-Saadi, A.G. Safi El-Din, and S.M. El-Moghazy, Design, synthesis and biological evaluation of novel diphenylthiazole-thiazolidin-4-one-based derivatives as anti-inflammatory/analgesic agents, J. Chem. Pharm. Res. 7 (2015), pp. 1073–1079.
  • A. Geronikaki, D. Hadjipavlou-Litina, A. Zablotskaya, and I. Segal, Organosilicon-containing thiazole derivatives as potential lipoxygenase inhibitors and anti-inflammatory agents, Bioinorg. Chem. Appl. (2007), Article ID 92145, 7 pages, http://doi.org/10.1155/2007/92145.
  • A.A. Lagunin, A. Geronikaki, P.T. Eleftheriou, D.I. Hadjipavlou-Litina, D.A. Filimonov, and V.V. Poroikov, Computer-aided discovery of potential anti-inflammatory thiazolidinones with dual 5-LOX/COX inhibition, J. Med. Chem. 51 (2008), pp. 1601–1609.
  • O. Kouatly, A. Geronikaki, Ch Kamoutsis, D. Hadjipavlou-Litina, and Ph Eleftheriou, Adamantane derivatives of thiazolyl N-substituted amide, as possible non-steroidal antiinflammatory agents, Eur. J. Med. Chem. 44 (2009), pp. 1198–1204.
  • A.A. Kadi, N.R. El-Brollosy, O.A. Al-Deeb, E.E. Habib, T.M. Ibrahim, and A.A. El-Emam, Synthesis, antimicrobial, and anti-inflammatory activities of novel 2-(1-adamantyl)-5-substituted-1,3,4-oxadiazoles and 2-(1-adamantylamino)-5-substituted-1,3,4-thiadiazoles, Eur. J. Med. Chem. 42 (2007), pp. 235–242.
  • M.A. Al-Omar, E.S. Al-Abdullah, I.A. Shehata, E.E. Habib, T.M. Ibrahim, and A.A. El-Emam, Synthesis, antimicrobial, and anti-inflammatory activities of novel 5-(1-adamantyl)-4 arylideneamino-3-mercapto-1,2,4-triazoles and related derivatives, Molecules 15 (2010), pp. 2526–2550.
  • A.A. Kadi, E.S. Al-Abdullah, I.A. Shehata, E.E. Habib, T.M. Ibrahim, and A.A. El-Emam, Synthesis, antimicrobial and anti-inflammatory activities of novel 5-(1-adamantyl)-1,3,4-thiadiazole derivatives, Eur. J. Med. Chem. 45 (2010), pp. 5006–5011.
  • A.A. El-Emam, O.A. Al-Deeb, M. Al-Omar, and J. Lehmann, Synthesis, antimicrobial, and anti-HIV-1 activity of certain 5-(1-adamantyl)-2-substituted thio-1,3,4-oxadiazoles and 5-(1-adamantyl)-3-substituted aminomethyl-1,3,4-oxadiazoline-2-thiones, Bioorg. Med. Chem. 12 (2004), pp. 5107–5113.
  • U. Calis, M. Yarim, M. Koksal, and M. Ozalp, Synthesis and antimicrobial activity evaluation of some new adamantane derivatives, Arzneimittelforschung 52 (2002), pp. 2778–2781.
  • J. Sun, S. Wang, W. Bu, M.-Y. Wei, W.-W. Li, M.-Na Yao, Z.-Y. Ma, C.-T. Lu, H.-H. Li, N.-P. Hu, E.-H. Zhang, G.-D. Yang, A.-D. Wen, and X.-H. Zhu, Synthesis of a novel adamantyl nitroxide derivative with potent anti-hepatoma activity in vitro and in vivo, Am. J Cancer Res. 6 (2016), pp. 1271–1286.
  • I. Papanastasiou, A. Tsotinis, N. Kolocouris, S.P. Nikas, and A. Vamvakides, New aminoadamantane derivatives with antiproliferative activity, Med. Chem. Res. 23 (2014), pp. 1966–1975.
  • N. Tsuzuki, T. Hama, M. Kawada, A. Hasui, R. Konishi, S. Shiwa, Y. Ochi, S. Futaki, and K. Kitagawa, Adamantane as a brain-directed drug carrier for poorly absorbed drug 2. AZT Derivatives conjugated with the 1-adamantane moiety, J. Pharm. Sci. 83 (1994), pp. 481–484.
  • E.A. Val’dman, T.A. Voronina, and L.N. Nerobkova, The antiparkinson activity of a new adamantane derivative, Eksp. Klin. Farmakol. 62 (1999), pp. 3–6.
  • P. Vicini, F. Zani, P. Cozzini, and I. Doytchinova, Hydrazones of 1,2-benzisothiazole hydrazides: Synthesis, antimicrobial activity and QSAR investigations, Eur. J. Med. Chem. 37 (2002), pp. 553–564.
  • F. Zani, P. Vicini, and M. Incerti, Synthesis and antimicrobial properties of 2-(benzylidene-amino)-benzo[d]isothiazol-3-ones, Eur. J. Med. Chem. 39 (2004), pp. 135–140.
  • G. Bruno, L. Costantino, C. Curinga, R. Maccari, F. Monforte, F. Nicolo, R. Ottana, and M.G. Vigorita, Synthesis and aldose reductase inhibitory activity of 5-arylidene-2,4-thiazolidinediones, Bioorg. Med. Chem. 10 (2002), pp. 1077–1084.
  • A. Geronikaki, and G. Theophilidis, Synthesis of 2-(aminοαcetylamino)thiazole derivatives and comparison of their local anaesthetic activity by method of action potential, Eur. J. Med. Chem. 27 (1992), pp. 709–716.
  • P. Saura, J.-D. Maréchal, L. Masgrau, J.M. Lluchab, and A. Gonzalez-Lafont, Computational insight into the catalytic implication of head/tail-first orientation of arachidonic acid in human 5-lipoxygenase: Consequences for the positional specificity of oxygenation, Phys. Chem. Chem. Phys. 18 (2016), pp. 23017–23035.
  • R. Huey, G.M. Morris, A.J. Olson, and D.S. Goodsell, A semiempirical free energy force field with charge-based desolvation, J. Comp. Chem. 28 (2007), pp. 1145–1152.
  • E. Pontiki, D. Hadjipavlou-Litina, K. Litinas, O. Nicolotti, and A. Carotti, Design, synthesis and pharmacobiological evaluation of novel acrylic acid derivatives acting as lipoxygenase and cyclooxygenase-1 inhibitors with antioxidant and anti-inflammatory activities, Eur. J. Med. Chem. 46 (2011), pp. 191–200.
  • D. Lapenna, G. Ciofani, S.D. Pierdomenico, M. Neri, C. Cuccurullo, M.A. Giamberardino, and F. Cuccurullo, Inhibitory activity of salicylic acid on lipoxygenase-dependent lipid peroxidation, Biochim. Biophys. Acta. 1790 (2009), pp. 25–30.
  • I.B. Taraporewala, and J.M. Kauffman, Synthesis and structure-activity relationships of anti-inflammatory 9,10-dihydro-9-oxo-2-acridinealkanoic acids and 4-(2-carboxyphenyl)aminobenzenealkanoic acids, J. Pharm. Sci. 79 (1990), pp. 173–178.
  • R.K. Somvanshi, A.K. Singh, M. Saxena, B. Mishra, and S. Dey, Development of novel peptide inhibitor of lipoxygenase based on biochemical and BIAcore evidences, Biochim. Biophys. Acta. 1784 (2008), pp. 1812–1817.
  • A.R. Brash, Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate, J. Biol. Chem. 274 (1999), pp. 23679–23682.
  • D. Shibata, and B. Axelrod, Plant lipoxygenases, J. Lipid Mediat. Cell Signal. 12 (1995), pp. 213–228.
  • P. Aparoy, R.N. Reddy, L. Guruprasad, M.R. Reddy, and P. Reddanna, Homology modeling of 5-lipoxygenase and hints for better inhibitor design, J. Comput. Aided Mol. Des. 22 (2008), pp. 611–619.
  • P.N. Rao, Q.H. Chen, and E.E. Knaus, Synthesis and structure–activity relationship studies of 1,3-diarylprop-2-yn-1-ones: Dual inhibitors of cyclooxygenases and lipoxygenases, J. Med. Chem. 49 (2006), pp. 1668–1683.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.