353
Views
19
CrossRef citations to date
0
Altmetric
9th International Symposium on Computational Methods in Toxicology and Pharmacology Integrating Internet Resources (CMTPI-2017) - Part 4. Guest Editors: A.K. Saxena and M. Saxena

Repurposing drugs for use against Zika virus infectionFootnote$

Pages 103-115 | Received 25 Oct 2017, Accepted 25 Nov 2017, Published online: 04 Jan 2018

References

  • B.D. Foy, K.C. Kobylinski, J.L. Chilson Foy, B.J. Blitvich, A. Travassos da Rosa, A.D. Haddow, R.S. Lanciotti, and R.B. Tesh, Probable non-vector-borne transmission of Zika virus, Colorado, USA, Emerg. Infect. Dis. 17 (2011), pp. 880–882.
  • S.A. Rasmussen, D.J. Jamieson, M.A. Honein, and L.R. Petersen, Zika virus and birth defects–reviewing the evidence for causality, N. Engl. J. Med. 374 (2016), pp. 1981–1987.
  • A. Alam, N. Imam, A. Farooqui, S. Ali, M.Z. Malika, and R. Ishrata, Recent trends in ZIKV research: A step away from cure, Biomed. Pharmacother. 91 (2017), pp. 1152–1159.
  • M.T. Aliota, L. Bassit, S.S. Bradrick, B. Cox, M.A. Garcia-Blanco, C. Gavegnano, T.C. Friedrich, T.G. Golos, D.E. Griffin, A.D. Haddow, E.G. Kallas, U. Kitron, M. Lecuit, D.M. Magnani, C. Marrs, N. Mercer, E. McSweegan, L.F.P. Ng, D.H. O’Connor, J.E. Osorio, G.S. Ribeiro, M. Ricciardi, S.L. Rossi, G. Saade, R.F. Schinazi, G.O. Schott-Lerner, C. Shan, P.Y. Shi, D.I. Watkins, N. Vasilakis, and S.C. Weaver, Zika in the Americas, year 2: What have we learned? What gaps remain? A report from the Global Virus Network, Antiviral Res. 144 (2017), pp. 223–246.
  • G.W. Dick, S.F. Kitchen, and A.J. Haddow, Zika virus. I. Isolations and serological specificity, Trans. R. Soc. Trop. Med. Hyg. 46 (1952), pp. 509–520.
  • G.W. Dick, Zika virus. II. Pathogenicity and physical properties, Trans. R. Soc. Trop. Med. Hyg. 46 (1952), pp. 521–534.
  • F.N. Macnamara, Zika virus: A report on three cases of human infection during an epidemic of jaundice in Nigeria, Trans. R. Soc. Trop. Med. Hyg. 48 (1954), pp. 139–145.
  • W.G. Bearcroft, Zika virus infection experimentally induced in a human volunteer, Trans. R. Soc. Trop. Med. Hyg. 50 (1956), pp. 442–448.
  • J.P. Boorman and J.S. Porterfield, A simple technique for infection of mosquitoes with viruses transmission of Zika virus, Trans. R. Soc. Trop. Med. Hyg. 50 (1956), pp. 238–242.
  • P. Brès, Données récentes apportées par les enquêtes sérologiques sur la prévalence des arbovirus en Afrique, avec référence spéciale à la fièvre jaune, Bull. Org. Mond. Santé 43 (1970), pp. 223–267.
  • N.J. Marchette, R. Garcia, and A. Rudnick, Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia, Am. J. Trop. Med. Hyg. 18 (1969), pp. 411–415.
  • H.J. Posen, J.S. Keystone, J.B. Gubbay, and S.K. Morris, Epidemiology of Zika virus, 1947–2007, BMJ Global Health 1 (2016), pp. e000087.
  • M.R. Duffy, T.H. Chen, W.T. Hancock, A.M. Powers, J.L. Kool, R.S. Lanciotti, M. Pretrick, M. Marfel, S. Holzbauer, C. Dubray, L. Guillaumot, A. Griggs, M. Bel, A.J. Lambert, J. Laven, O. Kosoy, A. Panella, B.J. Biggerstaff, M. Fischer, E.B. Hayes, Zika virus outbreak on Yap Island, Federated States of Micronesia, N. Engl. J. Med. 360 (2009), pp. 2536–2543.
  • V.M. Cao-Lormeau, C. Roche, A. Teissier, E. Robin, A.L. Berry, H.P. Mallet, A.A. Sall, and D. Musso, Zika virus, French Polynesia, South Pacific, 2013, Emerg. Infect. Dis. 20 (2014), pp. 1085–1086.
  • E. Oehler, L. Watrin, P. Larre, I. Leparc-Goffart, S. Lastère, F. Valour, L. Baudouin, H.P. Mallet, D. Musso, and F. Ghawche, Zika virus infection complicated by Guillain-Barré syndrome – case report, French Polynesia, December 2013, Euro Surveill. 19 (2014), pp. 20720. Available at http://www.eurosurveillance.org/ViewArticle,aspx?ArticleId=20720
  • C. Zanluca, V.C.A. de Melo, A.L.P. Mosimann, G.I.V. dos Santos, C.N.D. dos Santos, and K. Luz, First report of autochthonous transmission of Zika virus in Brazil, Mem. Inst. Oswaldo Cruz, Rio de Janeiro 110 (2015), pp. 569–572.
  • N. Gyawali, R.S. Bradbury, and A.W. Taylor-Robinson, The global spread of Zika virus: Is public and media concern justified in regions currently unaffected?, Infect. Dis. Poverty 5 (2016), p. 37.
  • A.S. Fauci and D.M. Morens, Zika virus in the Americas – yet another arbovirus threat, N. Engl. J. Med. 374 (2016), pp. 601–604.
  • J. Devillers, C. Lagneau, A. Lattes, J.C. Garrigues, M.M. Clemente, and A. Yébakima, In silico models for predicting vector control chemicals targeting Aedes aegypti, SAR QSAR Environ. Res. 25 (2014), pp. 805–835.
  • J. Devillers, A. Doucet-Panaye, and J.P. Doucet, Structure–activity relationship (SAR) modelling of mosquito larvicides, SAR QSAR Environ. Res. 26 (2015), pp. 263–278.
  • J.P. Doucet, E. Papa, A. Doucet-Panaye, and J. Devillers, QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti, SAR QSAR Environ. Res. 28 (2017), pp. 451–470.
  • P. Wang, X. Xu, S. Liao, J. Song, G. Fan, S. Chen, and Z. Wang, Quantitative structure–activity relationship study of amide mosquito repellents, SAR QSAR Environ. Res. 28 (2017), pp. 341–353.
  • J.E. Knox, N.L. Ma, Z. Yin, S.J. Patel, W.L. Wang, W.L. Chan, K.R.R. Rao, G. Wang, X. Ngew, V. Patel, D. Beer, S.P. Lim, S.G. Vasudevan, and T.H. Keller, Peptide inhibitors of West Nile NS3 protease: SAR study of tetrapeptide aldehyde inhibitors, J. Med. Chem. 49 (2006), pp. 6585–6590.
  • T. Knehans, A. Schüller, D.N. Doan, K. Nacro, J. Hill, P. Güntert, M.S. Madhusudhan, T. Weil, and S.G. Vasudevan, Structure-guided fragment-based in silico drug design of dengue protease inhibitors, J. Comput. Aided Mol. Des. 25 (2011), pp. 263–274.
  • S. Gupta, A. Jadaun, H. Kumar, U. Raj, P.K. Varadwaj, and A.R. Rao, Exploration of new drug like inhibitors for serine/threonine protein phosphatase 5 of Plasmodium falciparum: A docking and simulation study, J. Biomol. Struct. Dyn. 13 (2015), pp. 1–68.
  • V.K. Vyas, G. Qureshi, M. Ghate, H. Patel, and S. Dalai, Identification of novel PfDHODH inhibitors as antimalarial agents via pharmacophore-based virtual screening followed by molecular docking and in vivo antimalarial activity, SAR QSAR Environ. Res. 27 (2016), pp. 427–440.
  • S.P. Kumar, L.B. George, Y.T. Jasrai, and H.A. Pandya, Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives, SAR QSAR Environ. Res. 26 (2015), pp. 61–77.
  • X. Hou, X. Chen, M. Zhang, and A. Yan, QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors, SAR QSAR Environ. Res. 27 (2016), pp. 101–124.
  • J. Devillers, Computational Design of Chemicals for the Control of Mosquitoes and their Diseases, CRC Press, Boca Raton, FL, 2018.
  • M.M.A.K. Shawan, M.M. Hossain, M.A. Hasan, M.M. Hasan, A. Parvin, S. Akter, K.R. Uddin, S. Banik, M. Morshed, M.N. Rahman, and S.M.B. Rahman, Design and prediction of potential RNAi (siRNA) molecules for 3'UTR PTGS of different strains of Zika virus: A computational approach, Nat. Sci. 13 (2015), pp. 37–50.
  • S. Fernando, T. Fernando, M. Stefanik, L. Eyer, and D. Ruzek, An approach for Zika virus inhibition using homology structure of the envelope protein, Mol. Biotechnol. 58 (2016), pp. 801–806.
  • K.G. Byler, I.V. Ogungbe, and W.N. Setzer, In-silico screening for anti-Zika virus phytochemicals, J. Molec. Graph. Model. 69 (2016), pp. 78–91.
  • S. Ekins, A.L. Perryman, and C. Horta Andrade, OpenZika: An IBM world community grid project to accelerate Zika virus drug discovery, PLoS Negl. Trop. Dis. 10 (2016), pp. e0005023.
  • D. Cavalla, Predictive methods in drug repurposing: Gold mine or just a bigger haystack? Drug Discov. Today 18 (2013), pp. 523–532.
  • E. Kincaid, A second look: Efforts to repurpose old drugs against Zika cast a wide net, Nature Med. 22 (2016), pp. 824–825.
  • R. Delvecchio, L.M. Higa, P. Pezzuto, A.L. Valadão, P.P. Garcez, F.L. Monteiro, E.C. Loiola, A.A. Dias, F.J.M. Silva, M.T. Aliota, E.A. Caine, J.E. Osorio, M. Bellio, D.H. O’Connor, S. Rehen, R.S. de Aquiar, A. Savarino, L. Campanati, and A. Tanuri, Chloroquine inhibits Zika virus infection in different cellular models, Viruses 8 (2016), p. E322.
  • G. Barbosa-Lima, L.S. da Silveira Pinto, C.R. Kaiser, J.L. Wardell, C.S. De Freitas, Y.R. Vieira, A. Marttorelli, J.C. Neto, P.T. Bozza, S.M.S.V. Wardell, M.V.N. de Souza, and T.M.L. Souza, N-(2-(arylmethylimino)ethyl)-7-chloroquinolin-4-amine derivatives, synthesized by thermal and ultrasonic means, are endowed with anti-Zika virus activity, Eur. J. Med. Chem. 127 (2017), pp. 434–441.
  • H. Tang, C. Hammack, S.C. Ogden, Z. Wen, X. Qian, Y. Li, B. Yao, J. Shin, F. Zhang, E.M. Lee, K.M. Christian, R.A. Didier, P. Jin, H. Song, and G.L. Ming, Zika virus infects human cortical neural progenitors and attenuates their growth, Cell Stem Cell 18 (2016), pp. 587–590.
  • M. Xu, E.M. Lee, Z. Wen, Y. Cheng, W.K. Huang, X. Qian, J. Tcw, J. Kouznetsova, S.C. Ogden, C. Hammack, F. Jacob, H.N. Nguyen, M. Itkin, C. Hanna, P. Shinn, C. Allen, S.G. Michael, A. Simeonov, W. Huang, K.M. Christian, A. Goate, K.J. Brennand, R. Huang, M. Xia, G.L. Ming, W. Zheng, H. Song, and H. Tang, Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen, Nature Med. 22 (2016), pp. 1101–1107.
  • N.J. Barrows, R.K. Campos, S.T. Powell, K.R. Prasanth, G. Schott-Lerner, R. Soto-Acosta, G. Galarza-Muñoz, E.L. McGrath, R. Urrabaz-Garza, J. Gao, P. Wu, R. Menon, G. Saade, I. Fernandez-Salas, S.L. Rossi, N. Vasilakis, A. Routh, S.S. Bradrick, and M.A. Garcia-Blanco, A screen of FDA-approved drugs for inhibitors of Zika virus infection, Cell Host Microbe 20 (2016), pp. 259–270.
  • A.J. Nok, Arsenicals (melarsoprol), pentamidine and suramin in the treatment of human African trypanosomiasis, Parasitol. Res. 90 (2003), pp. 71–79.
  • F. Hawking, Suramin: With special reference to onchocerciasis, Adv. Pharmacol. 15 (1978), pp. 289–322.
  • I.C. Albulescu, M. van Hoolwerff, L.A. Wolters, E. Bottaro, C. Nastruzzi, S.C. Yang, S.C. Tsay, J.R. Hwu, E.J. Snijder, and M.J. van Hemert, Suramin inhibits chikungunya virus replication through multiple mechanisms, Antiviral Res. 121 (2015), pp. 39–46.
  • C. Basavannacharya and S.G. Vasudevan, Suramin inhibits helicase activity of NS3 protein of dengue virus in a fluorescence-based high throughput assay format, Biochem. Biophys. Res. Commun. 453 (2014), pp. 539–544.
  • I.C. Albulescu, K. Kovacikova, A. Tas, E.J. Snijder, and M.J. van Hemert, Suramin inhibits Zika virus replication by interfering with virus attachment and release of infectious particles, Aintiviral Res. 143 (2017), pp. 230–236.
  • C.Q. Sacramento, G.R. de Melo, C.S. de Freitas, N. Rocha, L. Villas Bôas Hoelz, M. Miranda, N. Fintelman-Rodrigues, A. Marttorelli, A.C. Ferreira, G. Barbosa-Lima, J.L. Abrantes, Y.R. Vieira, M.M. Bastos, E. de Mello Volotão, E. Portela Nunes, D.A. Tschoeke, L. Leomil, E. Correia Loiola, P. Trindade, S.K. Rehen, F.A. Bozza, P.T. Bozza, N. Boechat, F.L. Thompson, A.M.B. de Filippis, K. Brüning, and T.M.L. Souza, The clinically approved antiviral drug sofosbuvir inhibits Zika virus replication, Sci. Rep. 7 (2017), pp. 40920.
  • J.F. Rossignol, Nitazoxanide: A first-in-class broad-spectrum antiviral agent, Antiviral Res. 110 (2014), pp. 94–103.
  • R.Y. Cao, Y.F. Xu, T.H. Zhang, J.J. Yang, Y. Yuan, P. Hao, Y. Shi, J. Zhong, and W. Zhong, Pediatric drug nitazoxanide: A potential choice for control of Zika, Brief Rep. OFID (2017), pp. 1–5, doi: 10.1093/ofid/ofx009.
  • G. Greenstone, The revival of thalidomide: From tragedy to therapy, BC Med. J. 53 (2011), pp. 230–233.
  • H.A. Ghofrani, I.H. Osterloh, and F. Grimminger, Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond, Nat. Rev. Drug Discov. 5 (2006), pp. 689–702.
  • P. Trouiller, P. Olliaro, E. Torreele, J. Orbinski, R. Laing, and N. Ford, Drug development for neglected diseases: A deficient market and a public-health policy failure, Lancet 359 (2002), pp. 2188–2194.
  • B. Pedrique, N. Strub-Wourgaft, C. Some, P. Olliaro, P. Trouiller, N. Ford, B. Pécoul, and J.H. Bradol, The drug and vaccine landscape for neglected diseases (2000–11): A systematic assessment, Lancet Glob. Health 1 (2013), pp. e371–e379.
  • T.I. Oprea and J.P. Overington, Computational and practical aspects of drug repositioning, Assay Drug Develop. Technol. 13 (2015), pp. 299–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.