271
Views
7
CrossRef citations to date
0
Altmetric
Articles

Identifying the inhibition of TIR proteins involved in TLR signalling as an anti-inflammatory strategy

&
Pages 295-318 | Received 16 Nov 2017, Accepted 18 Jan 2018, Published online: 15 Feb 2018

References

  • S. Akira and K. Takeda, Toll-like receptor signalling, Nat. Rev. Immunol. 4 (2004), pp. 499–511.
  • N.J. Gay and F.J. Keith, Drosophila Toll and IL-1 receptor, Nature 351 (1991), pp. 355–356.
  • D.S. Schneider, K.L. Hudson, T.Y. Lin, and K.V. Anderson, Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo, Genes Dev. 5 (1991), pp. 797–807.
  • J.L. Slack, K. Schooley, T.P. Bonnert, J.L. Mitcham, E.E. Qwarnstrom, J.E. Sims, and S.L. Dower, Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways, J. Biol. Chem. 275 (2000), pp. 4670–4678.
  • O. Fekonja, M. Avbelj, and R. Jerala, Suppression of TLR signaling by targeting TIR domain-containing proteins, Curr. Protein Pept. Sci. 13 (2012), pp. 776–788.
  • N.J. Gay and M. Gangloff, Structure and function of Toll receptors and their ligands, Annu. Rev. Biochem. 76 (2007), pp. 141–165.
  • S.L. Chan, L.Y. Low, S. Hsu, S. Li, T. Liu, E. Santelli, G. Le Negrate, J.C. Reed, V.L. Woods Jr, and J. Pascual, Molecular mimicry in innate immunity: Crystal structure of a bacterial TIR domain, J. Biol. Chem. 284 (2009), pp. 21386–21392.
  • E.F. Kenny and L.A.J. O’Neill, Signalling adaptors used by Toll-like receptors: An update, Cytokine 43 (2008), pp. 342–349.
  • R. Medzhitov, P. Preston-Hurlburt, E. Kopp, A. Stadlen, C. Chen, S. Ghosh, and C.A. Janeway Jr, MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways, Mol. Cell 2 (1998), pp. 253–258.
  • L.A.J. O’Neill, The role of MyD88-like adapters in Toll-like receptor signal transduction, Biochem. Soc. Trans. 31 (2003), pp. 643–647.
  • B. Verstak, C.J. Arnot, and N.J. Gay, An alanine-to-proline mutation in the BB-loop of TLR3 Toll/IL-1R domain switches signalling adaptor specificity from TRIF to MyD88, J. Immunol. 191 (2013), pp. 6101–6109.
  • C.N. Davis, E. Mann, M.M. Behrens, S. Gaidarova, M. Rebek, J. Rebek, and T. Bartfai, MyD88-dependent and -independent signaling by IL-1 in neurons probed by bifunctional Toll/IL-1 receptor domain/BB-loop mimetics, Proc. Natl. Acad. Sci. 103 (2006), pp. 2953–2958.
  • M. Yamamoto, S. Sato, H. Hemmi, H. Sanjo, S. Uematsu, T. Kaisho, K. Hoshino, O. Takeuchi, M. Kobayashi, T. Fujita, K. Takeda, and S. Akira, Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4, Nature 420 (2002), pp. 324–329.
  • K.A. Fitzgerald, E.M. Palsson-McDermott, A.G. Bowie, C.A. Jefferies, A.S. Mansell, G. Brady, E. Brint, A. Dunne, P. Gray, M.T. Harte, D. McMurray, D.E. Smith, J.E. Sims, T.A. Bird, and L.A. O'Neill, Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction, Nature 413 (2001), pp. 78–83.
  • T. Horng, G.M. Barton, and R. Medzhitov, TIRAP: An adapter molecule in the Toll signaling pathway, Nat. Immunol. 2 (2001), pp. 835–841.
  • H. Ohnishi, H. Tochio, Z. Kato, K.E. Orii, A. Li, T. Kimura, H. Hiroaki, N. Kondo, and M. Shirikawa, Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling, Proc. Natl. Acad. Sci. 106 (2009), pp. 10260–10265.
  • M. Yamamoto, S. Sato, H. Hemmi, K. Hoshino, T. Kaisho, H. Sanjo, O. Takeuchi, M. Sugiyama, M. Okabe, K. Takeda, and S. Akira, Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway, Science 301 (2003), pp. 640–643.
  • M.W. Covert, T.H. Leung, J.E. Gaston, and D. Baltimore, Achieving stability of lipopolysaccharide-induced NF-κB activation, Science 309 (2005), pp. 1854–1857.
  • H. Oshiumi, M. Sasai, K. Shida, T. Fujita, M. Matsumoto, and T. Seya, TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to Toll-like receptor 4 TICAM-1 that induces interferon-β, J. Biol. Chem. 278 (2003), pp. 49751–49762.
  • Y. Enokizono, H. Kumeta, K. Funami, M. Horiuchi, J. Sarmiento, K. Yamashita, D.M. Standley, M. Matsumoto, T. Seya, and F. Inagaki, Structures and interface mapping of the TIR domain-containing adaptor molecules involved in interferon signaling, Proc. Natl. Acad. Sci. 110 (2013), pp. 19908–19913.
  • Y. Xu, X. Tao, B. Shen, T. Horng, R. Medzhitov, J.L. Manley, and L. Tong, Structural basis for signal transduction by the Toll/interleukin-1 receptor domains, Nature 408 (2000), pp. 111–115.
  • A. Dunne, M. Ejdebäck, P.L. Ludidi, L.A.J. O’Neill, and N.J. Gay, Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88, J. Biol. Chem. 278 (2003), pp. 41443–41451.
  • V.Y. Toshchakov and S.N. Vogel, Cell-penetrating TIR BB loop decoy peptides, Expert Opin. Biol. Ther. 7 (2007), pp. 1035–1050.
  • M.A. Olson, M.S. Lee, T.L. Kissner, S. Alam, D.S. Waugh, and K.U. Saikh, Discovery of small molecule inhibitors of MyD88-dependent signaling pathways using a computational screen, Sci. Rep. 5 (2015), p. 14246.
  • R.C. Edgar, MUSCLE: Multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Res. 32 (2004), pp. 1792–1797.
  • E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, and T.E. Ferrin, UCSF Chimera?A visualization system for exploratory research and analysis, J. Comput. Chem. 25 (2004), pp. 1605–1612.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461.
  • C.M. Labbé, J. Rey, D. Lagorce, M. Vavruša, J. Becot, O. Sperandio, B.O. Villotreix, P. Tufféry, and M.A. Miteva, MTiOpenScreen: A web server for structure-based virtual screening, Nucleic Acids Res. 43 (2015), pp. W448–W454.
  • F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, P.W. Lee, and Y. Tang, admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties, J. Chem. Inf. Model. 52 (2012), pp. 3099–3105.
  • J.D. Thompson, D.G. Higgins and T.J. Gibson, ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22 (1994), pp. 4673–4680.
  • C.A. Lipinski, Lead- and drug-like compounds: The rule-of-five revolution, Drug Discov. Today Technol. 1 (2004), pp. 337–341.
  • B. Jayaram, T. Singh, G. Mukherjee, A. Mathur, S. Shekhar, and V. Shekhar, Sanjeevini: A freely accessible web-server for target directed lead molecule discovery, BMC Bioinformatics 13(Suppl 17) (2012), p. S7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.