222
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

The in silico identification of potent anti-cancer agents by targeting the ATP binding site of the N-domain of HSP90

, &
Pages 551-565 | Received 27 Apr 2018, Published online: 30 Jul 2018

References

  • J.L. Johnson, Evolution and function of diverse HSP90 homologs and cochaperone proteins, BBA-Mol. Cell Res. 1823 (2012), pp. 607–613.
  • S.S. Roy and M. Kapoor, In silico identification and computational analysis of the nucleotide binding site in the c-terminal domain of HSP90, J. Mol. Graph. Model. 70 (2016), pp. 253–274.
  • J. Li, J. Soroka, and J. Buchner, The HSP90 chaperone machinery: Conformational dynamics and regulation by co-chaperones, BBA-Mol. Cell Res. 1823 (2012), pp. 624–635.
  • S. Messaoudi, J.F. Peyrat, J.D. Brion, and M. Alami, Recent advances in HSP90 inhibitors as antitumor agents, Anticancer Agents Med. Chem. 8 (2008), pp. 761–782.
  • İ. Koca, M. Gümüş, A. Özgür, A. Dişli, and Y. Tutar, A novel approach to inhibit heat shock response as anticancer strategy by coumarine compounds containing thiazole skeleton, Anticancer Agents Med. Chem. 15 (2015), pp. 916–930.
  • J.H. Jeong, Y.J. Oh, Y. Lho, S.Y. Park, K.H. Liu, E. Ha, and Y.H. Seo, Targeting the entry region of HSP90’s ATP binding pocket with a novel 6,7- dihydrothieno[3,2-c]pyridin-5(4H)-yl amide, Eur. J. Med. Chem. 124 (2016), pp. 1069–1080.
  • C. Zhang, X. Wang, H. Liu, M. Zhang, M. Geng, L. Sun, A. Shen, and A. Zhang, Design, synthesis and pharmacological evaluation of 4,5-diarylisoxazols bearing amino acid residues within the 3-amido motif as potent heat shock protein 90 (HSP90) inhibitors, Eur. J. Med. Chem. 125 (2017), pp. 315–326.
  • B. Sepehri and R. Ghavami, Towards the in-silico design of new HSP90 inhibitors: Molecular docking and 3D-QSAR CoMFA studies of tetrahydropyrido [4, 3-d] pyrimidine derivatives as HSP90 inhibitors, Med. Chem. 14 (2018), Doi: 10.2174/1573406414666180321151029.
  • Y. Li, T. Zhang, S.J. Schwartz, and D. Sun, New developments in Hsp90 inhibitors as anti-cancer therapeutics: Mechanisms, clinical perspective and more potential, Drug Resist. Updates 12 (2009), pp. 17–27.
  • J.R. Sydor, E. Normant, C.S. Pien, J.R. Porter, J. Ge, L. Grenier, R.H. Pak, J.A. Ali, M.S. Dembski, J. Hudak, J. Patterson, C. Penders, M. Pink, M.A. Read, J. Sang, C. Woodward, Y. Zhang, D.S. Grayzel, J. Wright, J.A. Barrett, V.J. Palombella, J. Adams, and J.K. Tong, Development of 17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride (IPI-504), an anti-cancer agent directed against Hsp90, Proc. Natl. Acad. Sci. USA 103 (2010), pp. 17408–17413.
  • K. Sidera and E. Patsavoudi, HSP90 inhibitors: Current development and potential in cancer therapy, Recent Pat. Anticancer Drug Discov. 9 (2014), pp. 1–20.
  • L.M. Butler, R. Ferraldeschi, H.K. Armstrong, M.M. Centenera, and P. Workman, Maximizing the therapeutic potential of HSP90 inhibitors, Mol. Cancer Res. 13 (2015), pp. 1445–1451.
  • A. Dhawan, D. Nichol, F. Kinose, M.E. Abazeed, A. Marusyk, E.B. Haura, and J.G. Scott, Collateral sensitivity networks reveal evolutionary instability and novel treatment strategies in ALK mutated non-small cell lung cancer, Sci. Rep. 7 (2017), pp. 1232.
  • A.C. Lai and C.M. Crews, Induced protein degradation: An emerging drug discovery paradigm, Nat. Rev. Drug Discov. 16 (2017), pp. 101–114.
  • A.K. Saxena, S. Saxena, and S.S. Chaudhaery, Molecular modelling and docking studies on heat shock protein 90 (HSP90) inhibitors, SAR QSAR Environ. Res. 21 (2010), pp. 1–20.
  • S. Saxena, S.S. Chaudhaery, K. Varshney, and A.K. Saxena, Pharmacophore-based virtual screening and docking studies on HSP90 inhibitors, SAR QSAR Environ. Res. 21 (2010), pp. 445–462.
  • R. Sanam, S. Tajne, R. Gundla, S. Vadivelan, P.K. Machiraju, R. Dayam, L. Narasu, S. Jagarlapudi, and N. Neamati, Combined pharmacophore and structure-guided studies to identify diverse HSP90 inhibitors, J. Mol. Graph. Model. 28 (2010), pp. 472–477.
  • N.R. Dunna, S. Bandaru, U.R. Akare, S. Rajadhyax, V.R. Gutlapalli, M. Yadav, and A. Nayarisseri, Multiclass comparative virtual screening to identify novel HSP90 inhibitors: A therapeutic breast cancer drug target, Curr. Top. Med. Chem. 15 (2015), pp. 57–64.
  • S. Sakkiah, S. Thangapandian, S. John, and K.W. Lee, Pharmacophore based virtual screening, molecular docking studies to design potent heat shock protein 90 inhibitors, Eur. J. Med. Chem. 46 (2011), pp. 2937–2947.
  • S. Sakkiah, S. Thangapandian, S. John, Y.J. Kwon, and K.W. Lee, 3D QSAR pharmacophore based virtual screening and molecular docking for identification of potential HSP90 inhibitors, Eur. J. Med. Chem. 45 (2010), pp. 2132–2140.
  • R. Huang, D.M. Ayine-Tora, M. Nasri Muhammad Rosdi, Y. Li, J. Reynisson, and I.K.H. Leung, Virtual screening and biophysical studies lead to HSP90 inhibitors, Bioorg. Med. Chem. Lett. 27 (2017), pp. 277–281.
  • B. Sepehri and R. Ghavami, The identification of new ATAD2 bromodomain inhibitors: The application of combined ligand and structure-based virtual screening, SAR QSAR Environ. Res. 28 (2017), pp. 957–971.
  • B. Sepehri and R. Ghavami, The identification of new CD38 inhibitors by combined structure and ligand based virtual screening approaches of ZINC database, Lett. Drug Des. Discov. 15 (2018), pp. 654–660.
  • istar; software available at http://istar.cse.cuhk.edu.hk/idock/.
  • H. Li, K.S. Leung, P.J. Ballester, and M.H. Wong, iStar: A web platform for large-scale protein-ligand docking, PLOS ONE 9 (2014), pp. e85678.
  • J.J. Irwin and B.K. Shoichet, ZINC – A free database of commercially available compounds for virtual screening, J. Chem. Inf. Model. 45 (2005), pp. 177–182.
  • H. Li, K.S. Leung, and M.H. Wong, iDock: A multithreaded virtual screening tool for flexible ligand docking, Proceedings of the 2012 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), San Diego, 9–12 May 2012, pp. 77–84.
  • ZINC; software available at http://zinc.docking.org.
  • J.J. Irwin, T. Sterling, M.M. Mysinger, E.S. Bolstad, and R.G. Coleman, ZINC: A free tool to discover chemistry for biology, J. Chem. Inf. Model. 52 (2012), pp. 1757–1768.
  • AutoDock Vina; software available at http://vina.scripps.edu/.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461.
  • MGLTools 1.5.6, Molecular Graphics Laboratory (MGL) of The Scripps Research Institute. Software available at http://mgltools.scripps.edu.
  • Discovery Studio 16.1.0; software available at www.accelrys.com.
  • A. Lauria, M. Ippolito, and A.M. Almerico, Inside the HSP90 inhibitors binding mode through induced fit docking, J. Mol. Graph. Model. 27 (2009), pp.712–722.
  • P. Banerjee, A.O. Eckert, A.K. Schrey, and R. Preissner, ProTox-II: A webserver for the prediction of toxicity of chemicals, Nucleic Acids Res. 46 (2018), pp. W257–W263.
  • ProTox-II; software available at http://tox.charite.de/protox_II/index.php?site=compound_input/.
  • A.J. Woodhead, H. Angove, M.G. Carr, G. Chessari, M. Congreve, J.E. Coyle, J. Cosme, B. Graham, P.J. Day, R. Downham, L. Fazal, R. Feltell, E. Figueroa, M. Frederickson, J. Lewis, R. McMenamin, C.W. Murray, M.A. O’Brien, L. Parra, S. Patel, T. Phillips, D.C. Rees, S. Rich, D.M. Smith, G. Trewartha, M. Vinkovic, B. Williams, and A.J.A. Woolford, Discovery of (2,4-dihydroxy-5-isopropylphenyl)-[5-(4-methylpiperazin-1-ylmethyl)-1,3- dihydroisoindol-2-yl] methanone (AT13387), a novel inhibitor of the molecular chaperone HSP90 by fragment based drug design, J. Med. Chem. 53 (2010), pp. 5956–5969.
  • C.A. Lipinski, F. Lombardo, B.W. Dominy, and P.J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliver. Rev. 46 (2001), pp. 3–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.