394
Views
19
CrossRef citations to date
0
Altmetric
18th International Conference on QSAR in Environmental and Health Sciences (QSAR 2018)

A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity$

, , , , , , , , , & show all
Pages 591-611 | Received 14 Jun 2018, Accepted 03 Jul 2018, Published online: 27 Jul 2018

References

  • B.N. Ames, Charles S. Mott prize. The detection of environmental mutagens and potential carcinogens, Cancer 53 (1984), pp. 2034–2040.
  • W. Piegorsch and E. Zeiger, Measuring intra-assay agreement for the Ames Salmonella assay, in Statistical Methods in Toxicology, Lecture Notes in Medical Informatics, L. Hothorn, ed., Springer, Berlin Heidelberg, 1991, pp. 35–41.
  • E. Benfenati, R.G. Diaza, A. Cassano, S. Pardoe, G. Gini, C. Mays, R. Knauf, and L. Benighaus, The acceptance of in silico models for REACH: Requirements, barriers, and perspectives, Chem. Cent. J. 5 (2011), pp. 58.
  • R. Benigni and C. Bossa, Structure alerts for carcinogenicity, and the Salmonella assay system: A novel insight through the chemical relational databases technology. Mutat. Res. 659 (2008), pp. 248–261.
  • T. Ferrari, D. Cattaneo, G. Gini, N. Golbamaki Bakhtyari, A. Manganaro, and E. Benfenati, Automatic knowledge extraction from chemical structures: The case of mutagenicity prediction, SAR QSAR Environ. Res. 24 (2013), pp. 365–383.
  • T. Martin, User’s Guide for T.E.S.T. (Toxicity Estimation Software Tool), U.S. EPA/National Risk Management Research Laboratory/Sustainable Technology Division, Cincinnati, OH (2016). Available at https://www.epa.gov/sites/production/files/2016-05/documents/600r16058.pdf
  • E. Benfenati, A. Manganaro, and G. Gini, VEGA-QSAR: AI Inside a platform for predictive toxicology, in PAI@ AI* IA. (2013), pp. 21–28. http://ceur-ws.org/Vol-1107/
  • A. Cassano, G. Raitano, E. Mombelli, A. Fernández, J. Cester, A. Roncaglioni, and E. Benfenati, Evaluation of QSAR models for the prediction of Ames genotoxicity: A retrospective exercise on the chemical substances registered under the EU REACH regulation, J. Environ. Sci. Health Part C 32 (2014), pp. 273–298.
  • R. Benigni, The Benigni/Bossa rulebase for mutagenicity and carcinogenicity–a module of Toxtree, JRC Sci. Tech. Rep. (2008), pp. 1–78.
  • K. Hansen, S. Mika, T. Schroeter, A. Sutter, A. ter Laak, T. Steger-Hartmann, N. Heinrich, and K.R. Müller, Benchmark data set for in silico prediction of Ames mutagenicity, J. Chem. Inf. Model 49 (2009), pp. 2077–2081.
  • A.P. Toropova, A.A. Toropov, A. Lombardo, A. Roncaglioni, E. Benfenati, and G. Gini, A new bioconcentration factor model based on SMILES and indices of presence of atoms, Eur. J. Med. Chem. 45 (2010), pp. 4399–4402.
  • A.A. Toropov, A.P. Toropova, S.E. Martyanov, E. Benfenati, G. Gini, D. Leszczynska, and J. Leszczynski, Comparison of SMILES and molecular graphs as the representation of the molecular structure for QSAR analysis for mutagenic potential of polyaromatic amines, Chemom. Intell. Lab. Syst. 109 (2011), pp. 94–100.
  • T. Ferrari and G. Gini, An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts, Chem. Cent. J. 4 Suppl. 1, S2 (2010), pp. 1–6.
  • A. Manganaro, F. Pizzo, A. Lombardo, A. Pogliaghi, and E. Benfenati, Predicting persistence in the sediment compartment with a new automatic software based on the k-Nearest Neighbor (k-NN) algorithm, Chemosphere 144 (2016), pp. 1624–1630.
  • P. Mazzatorta, L.A. Tran, B. Schilter, and M. Grigorov, Integration of structure-activity relationship and artificial intelligence systems to improve in silico prediction of Ames test mutagenicity, J. Chem. Inf. Model 47 (2007), pp. 34–38.
  • L. Carlsson, M. Eklund, and U. Norinder, Aggregated conformal prediction, in IFIP International Conference on Artificial Intelligence Applications and Innovations, Springer, Berlin Heidelberg (2014), pp. 231–240.
  • U. Norinder, L. Carlsson, S. Boyer, and M. Eklund, Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination, J. Chem. Inf. Model. 54 (2014), pp. 1596–1603.
  • U. Norinder and S. Boyer, Binary classification of imbalanced datasets using conformal prediction, J. Mol. Graph. Model. 72 (2017), pp. 256–265.
  • J. Kittler, M. Hatef, R.P. Duin, and J. Matas, On combining classifiers, IEEE Trans. Pattern Anal. Mach. Intell. 20 (1998), pp. 226–239.
  • R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton, Adaptive mixtures of local experts, Neural Comput. 3 (1991), pp. 79–87.
  • E. Bauer and R. Kohavi, An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Mach. Learn. 36 (1991), pp. 105–139.
  • G.N. Cerruela García, N. García-Pedrajas, I. Luque Ruiz, and M.A. Gómez-Nieto, An ensemble approach for in silico prediction of Ames mutagenicity, J. Math. Chem. (2018), pp. 1–14.
  • E. Benfenati, P. Mazzatorta, D. Neagu, and G. Gini, Combining classifiers of pesticides toxicity through a neuro-fuzzy approach, in International Workshop on Multiple Classifier Systems, Springer-Verlag, Berlin Heidelberg (2002), pp. 293–303.
  • H. Jeffreys, Scientific Inference (3rd ed.). Cambridge University Press, Cambridge, 1973, pp. 31.
  • G. Shafer, A mathematical Theory of Evidence, Princeton University Press, Princeton NJ, 1976.
  • L.A. Zadeh, A simple view of the Dempster-Shafer theory of evidence and its implication for the rule of combination, AI Mag. 7 (1986), pp. 85.
  • J. Kazius, R. McGuire, and R. Bursi, Derivation and validation of toxicophores for mutagenicity prediction, J. Med. Chem. 48 (2005), pp. 312–320.
  • C. Helma, T. Cramer, S. Kramer, and L. De Raedt, Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds, J. chem. Inf. Comput. Sci. 44 (2004), pp. 1402–1411.
  • S.J. Farlow, Self-Organizing Methods in Modeling: GMDH Type Algorithms, CRC Press, Boca Raton, 1984.
  • A.G. Ivakhnenko, The group method of data of handling; A rival of the method of stochastic approximation, Sov. Autom. Control 13 (1968), pp. 43–55.
  • A.G. Ivakhnenko, Heuristic self-organization in problems of engineering cybernetics, Automatica 6 (1970), pp. 207–219.
  • A.G. Ivakhnenko, Polynomial theory of complex systems, IEEE Trans. Syst. Man Cybern. (1971), pp. 364–378.
  • H.R. Madala and A.G. Ivakhnenko, Inductive Learning Algorithms for Complex Systems Modelling, CRC Press, Boca Raton, 1994.
  • J.A. Mueller and F. Lemke, Self-Organizing Data Mining. Extracting Knowledge From Data, Libri BoD Hamburg, 2000.
  • J. Schmidhuber, Deep learning in neural networks: An overview, Neural Net. 61 (2015), pp: 85–117.
  • V.S. Stepashko, Potential noise immunity of modelling using a combinatorial GMDH algorithm without information regarding the noise, Sov. Autom. Control, 16 (1983), pp. 15–25.
  • J. Pearl, Reasoning with belief functions: An analysis of compatibility, Int. J. Approx. Reason. 4 (1990), pp. 363–389.
  • J. Gordon and E.H. Shortliffe, A method for managing evidential reasoning in a hierarchical hypothesis space, Artif. Intell. 26 (1985), pp. 323–357.
  • J.F. Rathman, C. Yang, and H. Zhou, Dempster-Shafer theory for combining in silico evidence and estimating uncertainty in chemical risk assessment, Comput. Toxicol. 6 (2018), pp. 16–31.
  • C. Drummond and R.C. Holte, What ROC curves can’t do (and Cost Curves Can), ROCAI (2004), pp. 19–26.
  • G.-E. Yap, A.-H. Tan, and H.-H. Pang, Discovering causal dependencies in mobile context-aware recommenders, in Mobile Data Management, MDM 2006, 7th International Conference On. IEEE Piscataway, NJ (2006), pp. 1630540-1–1630540-4.
  • P. Yang, Y. Hwa Yang, B. B Zhou, and A. Y Zomaya, A review of ensemble methods in bioinformatics, Curr. Bioinforma. 5 (2010), pp. 296–308.
  • G.B. Goh, C. Siegel, and A. Vishnu, An interpretable general-purpose deep neural network for predicting chemical properties, Stat. 1050 (2018), pp. 18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.