137
Views
6
CrossRef citations to date
0
Altmetric
18th International Conference on QSAR in Environmental and Health Sciences (QSAR 2018)

QSAR modelling of synergists to increase the efficacy of deltamethrin against pyrethroid-resistant Aedes aegypti mosquitoes$

, &
Pages 613-629 | Received 24 Apr 2018, Published online: 24 Aug 2018

References

  • S. Bhatt, P.W. Gething, O.J. Brady, J.P. Messina, A.W. Farlow, C.L. Moyes, J.M. Drake, J.S. Brownstein, A.G. Hoen, O. Sankoh, M.F. Myers, D.B. George, T. Jaenisch, G.R. Wint, C.P. Simmons, T.W. Scott, J.J. Farrar, and S.I. Hay, The global distribution and burden of dengue, Nature 496 (2013), pp. 504–507.
  • H. Zeller, W. van Bortel, and B. Sudre, Chikungunya: Its History in Africa and Asia and its spread to new regions in 2013–2014, J. Infect. Dis. 214 (2016), pp. S436–S440.
  • P. Gallian, I. Leparc-Goffart, P. Richard, F. Maire, O. Flusin, R. Djoudi, J. Chiaroni, R. Charrel, P. Tiberghien, and X. de Lamballerie, Epidemiology of chikungunya virus outbreaks in Guadeloupe and Martinique, 2014: An observational study in volunteer blood donors, PLoS Negl. Trop. Dis. 11 (2017), pp. e0005254.
  • P. Kotsakiozi, A. Gloria-Soria, A. Caccone, B. Evans, R. Schama, A.J. Martins, and J.R. Powell, Tracking the return of Aedes aegypti to Brazil, the major vector of the dengue, chikungunya and Zika viruses, PLoS Negl. Trop. Dis. 11 (2017), pp. e0005653.
  • H.J. Posen, J.S. Keystone, J.B. Gubbay, and S.K. Morris, Epidemiology of Zika virus, 1947–2007, BMJ Global Health 1 (2016), pp. e000087.
  • N. Gyawali, R.S. Bradbury, and A.W. Taylor-Robinson, The global spread of Zika virus: Is public and media concern justified in regions currently unaffected?, Infect. Dis. Poverty 5 (2016), pp. 37.
  • A.S. Fauci and D.M. Morens, Zika virus in the Americas—Yet another arbovirus threat, N. Engl. J. Med. 374 (2016), pp. 601–604.
  • C. Rückert, J. Weger-Lucarelli, S.M. Garcia-Luna, M.C. Young, A.D. Byas, R.A. Murrieta, J.R. Fauver, and G.D. Ebel, Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes, Nat. Commun. 8 (2017), pp. 15412. doi: 10.1038/ncomms15412.
  • L.A. Lacey, Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control, J. Am. Mosq. Control. Assoc. 23 (2007), pp. 133–163.
  • M. Paris, J.P. David, and L. Despres, Fitness costs of resistance to Bti toxins in the dengue vector Aedes aegypti, Ecotoxicology 20 (2011), pp. 1184–1194.
  • R. Yaicharoen, R. Kiatfuengfoo, T. Chaeronviriyaphap, and P. Rongnoparut, Characterization of deltamethrin, resistance in field populations of Aedes aegypti in Thailand, J. Vect. Ecol. 30 (2005), pp. 144–150.
  • S. Marcombe, A. Carron, F. Darriet, M. Etienne, P. Agnew, M. Tolosa, M.M. Yp-Tcha, C. Lagneau, A. Yébakima, and V. Corbel, Reduced efficacy of pyrethroid space sprays for dengue control in an area of Martinique with pyrethroid resistance, Am. J. Trop. Med. Hyg. 80 (2009), pp. 745–751.
  • L.C. Alvarez, G. Ponce, M. Oviedo, B. Lopez, and A.E. Flores, Resistance to malathion and deltamethrin in Aedes aegypti (Diptera: Culicidae) from western Venezuela, J. Med. Entomol. 50 (2013), pp. 1031–1039.
  • L.B. Smith, S. Kasai, and J.G. Scott, Pyrethroid resistance in Aedes aegypti and Aedes albopictus: Important mosquito vectors of human diseases, Pest. Biochem. Physiol. 133 (2016), pp 1–12.
  • J. Hemingway and H. Ranson, Insecticide resistance in insect vectors of human disease, Annu. Rev. Entomol. 45 (2000), pp. 371–391.
  • M. Chouaïbou, G. Bingham Zivanovic, T.B. Knox, H. Pates Jamet, and B. Bonfoh, Synergist bioassays: A simple method for initial metabolic resistance investigation of field Anopheles gambiae s.l. populations, Acta Tropica 130 (2014), pp. 108–111.
  • Y. Du, Y. Nomura, B.S. Zhorov, and K. Dong, Sodium channel mutations and pyrethroid resistance in Aedes aegypti, Insects 7 (2016), pp. 60.
  • A.M. Al Nazawi, J. Aqili, M. Alzahrani, P.J. McCall, and D. Weetman, Combined target site (kdr) mutations play a primary role in highly pyrethroid resistant phenotypes of Aedes aegypti from Saudi Arabia, Parasites & Vectors 10 (2017), p. 161.
  • J. Devillers, L. Lagadic, O. Yamada, F. Darriet, R. Delorme, X. Deparis, J.P. Jaeg, C. Lagneau, B. Lapied, F. Quiniou, and A. Yébakima, Use of multicriteria analysis for selecting candidate insecticides for vector control, in Juvenile Hormones and Juvenoids. Modeling Biological Effects and Environmental Fate, J. Devillers, ed., CRC Press, Boca Raton, FL, 2013, pp. 341–381.
  • J. Devillers, C. Lagneau, A. Lattes, J.C. Garrigues, M. M. Clémenté, and A. Yébakima, In silico models for predicting vector control chemicals targeting Aedes aegypti, SAR QSAR Environ. Res. 25 (2014), pp. 803–835.
  • R.L. Metcalf, Mode of action of insecticide synergists, Ann. Rev. Entomol. 12 (1967), pp. 229–256.
  • C.B. Bernard and B.J.R. Philogène, Insecticide synergists: Role, importance, and perspectives, J. Toxicol. Environ. Health: Curr. Iss. 38 (1993), pp. 199–223.
  • G. Bingham, C. Strode, L. Tran, P.T. Khoa, and H.P. Jamet, Can piperonyl butoxide enhance the efficacy of pyrethroids against pyrethroid-resistant Aedes aegypti?, Trop. Med. Int. Health 16 (2011), pp. 492–500.
  • C. Eagleson, Oil Synergist for Insecticides, U.S. Patent 2,202,145, May 28, 1940.
  • H.L. Haller, E.R. McGovran, L.D. Goodhue, and W.N. Sullivan, The synergistic action of sesamin with pyrethrum insecticides, J. Org. Chem. 7 (1942), pp. 183–184.
  • H.L. Haller, F.B. LaForge, and W.N. Sullivan, Some compounds related to sesamin: Their structures and their synergistic effect with pyrethrum insecticides, J. Org. Chem. 7 (1942), pp. 185–188.
  • O.F. Hedenburg, Methylenedioxyphenyl Compound as Insecticide and Pyrethrin Synergist, U.S. Patent, 2,452,188, October 26, 1948.
  • H. Wachs, Synergistic insecticides, Science 105 (1947), pp. 530–531.
  • G.D. Moores, D. Philippou, V. Borzatta, P. Trincia, P. Jewess, R. Gunning, and G. Bingham, An analogue of piperonyl butoxide facilitates the characterisation of metabolic resistance, Pest Manag. Sci. 65 (2009), pp. 150–154.
  • V.A. Vijayan, B.Y. Sathish Kumar, K.N. Ganesh, J. Urmila, M.R. Fakoorziba, and A.K. Makkapati, Efficacy of piperonyl butoxide (PBO) as a synergist with deltamethrin on five species of mosquitoes, J. Commun. Dis. 39 (2007), pp. 159–163.
  • M.R. Fakoorziba, F. Eghbal, and V.A. Vijayan, Synergist efficacy of piperonyl butoxide with deltamethrin as pyrethroid insecticide on Culex tritaeniorhynchus (Diptera: Culicidae) and other mosquitoe species, Environ. Toxicol. 24 (2009), pp. 19–24.
  • S.K. Dadzie, J. Chabi, A. Asafu-Adjaye, O. Owusu-Akrofi, A. Baffoe-Wilmot, K. Malm, C. Bart-Plange, S. Coleman, M.A. Appawu, and D.A. Boakye, Evaluation of piperonyl butoxide in enhancing the efficacy of pyrethroid insecticides against resistant Anopheles gambiae s.l. in Ghana, Malaria J. 16 (2017), pp. 342.
  • S. Marcombe, R. Poupardin, F. Darriet, S. Reynaud, J. Bonnet, C. Strode, C. Brengues, A. Yébakima, H. Ranson, V. Corbel and J.P. David, Exploring the molecular basis of insecticide resistance in the dengue vector Aedes aegypti: A case study in Martinique Island (French West Indies), BMC Genomics 10 (2009), pp. 494.
  • M.E. Synerholm, A. Hartzell, and V. Cullman, Pyrethrin extenders, Contrib. Boyce Thompson Inst. Plant Res. 15 (1947), pp. 35–45.
  • J.H. Fales, O.F. Bodenstein, and M. Beroza, New pyrethrum synergist. Evaluation of a 3,4-methylenedioxyphenyl acetal as synergist for pyrethrins and allethrin against house flies, mosquitoes, roaches, Japanese beetles, Soap Chem. Spec. 33 (1957), pp. 79–82.
  • G.T. Brooks and A. Harrison, The effect of pyrethrin synergists, especially Sesamex on the insecticidal potency of hexachlorocyclopentadiene derivatives (“cyclodiene” insecticides) in the adult housefly, Musca domestica L., Biochem. Pharmacol. 13 (1964), pp. 827–840.
  • L.O. Hopkins and D.R. Maciver, Tropital-a new synergist for pyrethrins, Pyrethrum Post 8 (1965), pp.3–5.
  • P.S. Hewlett, C.J. Lloyd, and A.N. Bates, Effects of 2-diethylaminoethyl 2,2-diphenylpentanoate (SKF 525A) on insecticidal potency, Nature 192 (1961), pp. 1273.
  • E.R. Chadwick, A comparison of MGK 264 and piperonyl butoxide as pyrethrum synergists, Pyreth. Post 7 (1963), pp. 11–15, 48.
  • N. Aïzoun, R. Aïkpon, V. Gnanguenon, R. Azondekon, F. Oké-Agbo, G.G. Padonou, and M. Akogbéto, Dynamics of insecticide resistance and effect of synergists piperonyl butoxide (PBO), S.S.S-tributylphosphorotrithioate (DEF) and ethacrynic acid (ETAA or EA) on permethrin, deltamethrin and dichlorodiphenyltrichloroethane (DDT) resistance in two Anopheles gambiae s. l. populations from Southern Benin, West Africa, J. Parasitol. Vector Biol. 6 (2014), pp. 1–10.
  • E.O. Gomes, S.M. Nunomura, O. Marinotti, and W.P. Tadei, Synergistic potential of dillapiole combined with pyrethroids against mosquitoes, Vector Biol. J. 1 (2016), p. 3.
  • W. Karcher and J. Devillers, Practical Applications of Quantitative Structure–Activity Relationships (QSAR) in Environmental Chemistry and Toxicology, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1990.
  • J. Devillers and W. Karcher, Applied Multivariate Analysis in SAR and Environmental Studies, Kluwer Academic Publishers, Dordrecht, the Netherlands, 1991.
  • J. Devillers, A decade of research in environmental QSAR, SAR QSAR Environ. Res. 14 (2003), pp. 1–6.
  • K. Khan and K. Roy, Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach, SAR QSAR Environ. Res. 28 (2017), pp. 567–594.
  • V. Drgan, Š. Župerl, M. Vračko, F. Como, and M. Novič, Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm, SAR QSAR Environ. Res. 27 (2016), pp. 510–519.
  • J. Devillers, M.H. Pham-Delègue, A. Decourtye, H. Budzinski, S. Cluzeau, and G. Maurin, Modeling the acute toxicity of pesticides to Apis mellifera, Bull. Insect. 56 (2003), pp. 103–109.
  • J. Devillers, A. Chezeau, E. Thybaud, and R. Rahmani, QSAR modeling of the adult and developmental toxicity of glycols, glycol ethers, and xylenes to Hydra attenuata, SAR QSAR Environ. Res. 13 (2002), pp. 555–566.
  • A. Paternò, G. Bocci, G. Cruciani, C.G. Fortuna, L. Goracci, S. Sciré, and G. Musumarra, Cyto- and enzyme toxicities of ionic liquids modelled on the basis of VolSurf+ descriptors and their principal properties, SAR QSAR Environ. Res. 27 (2016), pp. 221–244.
  • J. Devillers, Computational Design of Chemicals for the Control of Mosquitoes and their Diseases, CRC Press, Boca Raton, 2018.
  • P. Wang, X. Xu, S. Liao, J. Song, G. Fan, S. Chen, and Z. Wang, Quantitative structure–activity relationship study of amide mosquito repellents, SAR QSAR Environ. Res. 28 (2017), pp. 341–353.
  • X. Hou, X. Chen, M. Zhang, A. Yan, QSAR study on the antimalarial activity of Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors, SAR QSAR Environ. Res. 27 (2016), pp. 101–124.
  • J. Devillers, A. Doucet-Panaye, and J.P. Doucet, Structure–activity relationship (SAR) modelling of mosquito larvicides, SAR QSAR Environ. Res. 26 (2015), pp. 263–278.
  • J. Devillers, A. Doucet-Panaye, J.P. Doucet, C. Lagneau, S. Estaran, and A. Yébakima, Predicting toxicity of piperidines against female adults of Aedes aegypti, in Computational Design of Chemicals for the Control of Mosquitoes and their Diseases, J. Devillers, ed., CRC Press, Boca Raton, 2018, pp. 297–314.
  • J.P. Doucet, E. Papa, A. Doucet-Panaye, and J. Devillers, QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti, SAR QSAR Environ. Res. 28 (2017), pp. 451–470.
  • J. Devillers and A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, Amsterdam, the Netherlands, 1999.
  • J.W. Pridgeon, K.M. Meepagala, J.J. Becnel, G.G. Clark, R.M. Pereira, and K.J. Linthicum, Structure-activity relationships of 33 piperidines as toxicants against female adults of Aedes aegypti (Diptera: Culicidae), J. Med. Entomol. 44 (2007), pp. 263–269.
  • J.W. Pridgeon, J.J. Becnel, U.R. Bernier, G.G. Clark, and K.J. Linthicum, Structure-activity relationships of 33 carboxamides as toxicants against female Aedes aegypti (Diptera: Culicidae), J. Med. Entomol. 47 (2010), pp. 172–178.
  • J.W. Pridgeon, U.R. Bernier, and J.J. Becnel, Toxicity comparison of eight repellents against four species of female mosquitoes, J. Am. Mosq. Control Assoc. 25 (2009), pp.168–173.
  • W.S. Abbott, A method for computing the effectiveness of an insecticide, J. Econ. Entomol. 18 (1925), pp. 265–267.
  • J. Devillers, Autocorrelation descriptors for modeling (eco)toxicological endpoints, in Topological Indices and Related Descriptors in QSAR and QSPR, J. Devillers and A.T. Balaban, eds., Gordon and Breach, the Netherlands, 1999, pp. 595–612.
  • J. Devillers, D. Domine, and W. Karcher, Estimating n-octanol/water partition coefficients from the autocorrelation method, SAR QSAR Environ. Res. 3 (1995), pp. 301–306.
  • J. Devillers, Prediction of toxicity of organophosphorus insecticides against the midge, Chironomus riparius, via a QSAR neural network model integrating environmental variables, Toxicol. Methods 10 (2000), pp. 69–79.
  • J. Devillers and J. Flatin, A general QSAR model for predicting the acute toxicity of pesticides to Oncorhynchus mykiss, SAR QSAR Environ. Res. 11 (2000), pp. 25–43.
  • J. Devillers, Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modelling, SAR QSAR Environ. Res. 15 (2004), pp. 501–510.
  • P. Broto and J. Devillers, Autocorrelation of properties distributed on molecular graphs, in Practical Applications of Quantitative Structure–Activity Relationships (QSAR) in Environmental Chemistry and Toxicology, W. Karcher and J. Devillers, eds., Kluwer Academic Publishers, Dordrecht, the Netherlands, 1990, pp. 105–127.
  • R.F. Rekker and R. Mannhold, Calculation of Drug Lipophilicity. The Hydrophobic Fragmental Constant Approach, John Wiley & Sons Ltd., Weinheim, Germany, 1992.
  • C. Hansch and A. Leo, Substituent Constants for Correlation Analysis in Chemistry and Biology, John Wiley & Sons Ltd., New York, 1979.
  • J. Devillers, Genetic Algorithms in Molecular Modeling, Academic Press, London, 1996.
  • J. Devillers, Neural Networks in QSAR and Drug Design, Academic Press, London, 1996.
  • J. Devillers, Artificial neural network modeling of the environmental fate and ecotoxicity of chemicals, in Ecotoxicology Modeling, J. Devillers, ed., Springer, New York, 2009, pp. 1–28.
  • J.W. Pridgeon, R.M. Pereira, J.J. Becnel, S.A. Allan, G.G. Clark, and K.J. Linthicum, Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action, J. Med. Entomol. 45 (2008), pp. 82–87.
  • I.K. Park, Insecticidal activity of isobutylamides derived from Piper nigrum against adult of two mosquito species, Culex pipiens pallens and Aedes aegypti, Nat. Prod. Res. 26 (2012), pp. 2129–2131.
  • J. Devillers, S. Bintein, D. Domine, and W. Karcher, A general QSAR model for predicting the toxicity of organic chemicals to luminescent bacteria (Microtox® test), SAR QSAR Environ. Res. 4 (1995), pp. 29–38.
  • Z. Wang, W. Sun, C.K. Huang, L. Wang, M.M. Ia, X. Cui, G.X. Hu, Z.S. Wang, Inhibitory effects of curcumin on activity of cytochrome P450 2C9 enzyme in human and 2C11 in rat liver microsomes, Drug Develop. Ind. Pharm.41 (2014), pp. 613–616.
  • World Health Organization, Guidelines for Efficacy Testing of Insecticides for Indoor and Outdoor Ground-applied Space Spray Applications, Control of Neglected Tropical Diseases, WHO Pesticide Evaluation Scheme, WHO/HTM/NTD/WHOPES/2009.2, 2009.
  • M. Jacobson, Pellitorine isomers. II. The synthesis of N-isobutyl-trans-2, trans-4-decadienamide, J. Am. Chem. Soc. 75 (1953), pp. 2584–2586.
  • J. Miranda, H.M. Debonsi Navickiene, R. Nogueira-Couto, S.Antônio de Bortoli, M. Kato, V. da Silva Bolzani, and M. Furlan, Susceptibility of Apis mellifera (Hymenoptera: Apidae) to pellitorine, an amide isolated from Piper tuberculatum (Piperaceae), Apidologie 34 (2003), pp. 409–415.
  • M. Miyakado, I. Nakayama, and H. Yoshioka, Insecticidal joint action of pipercide and co-occuring compounds isolated from Piper nigrum L., Agric. Biol. Chem. 44 (1980), pp. 1701–1703.
  • I.K. Park, S.G. Lee, S.C. Shin, J.D. Park, and Y.J. Ahn, Larvicidal activity of isobutylamides identified in Piper nigrum fruits against three mosquito species, J. Agric. Food Chem. 50 (2002), pp. 1866–1870.
  • H. Perumalsamy, J.R. Kim, S.M. Oh, J.W. Jung, Y-J Ahn, and H.W. Kwon, Novel histopathological and molecular effects of natural compound pellitorine on larval midgut epithelium and anal gills of Aedes aegypti, PLoS ONE 8 (2013), pp. e80226.
  • M. Miyakado, I. Nakayama, A. Inoue, M. Hatakoshi, and N. Ohno, Chemistry and insecticidal activities of Piperaceae amides and their synthetic analogues, J. Pest. Sci. 10 (1985), pp. 11–17.
  • M.A. Dekeyser, Acaricide mode of action, Pest Manag. Sci. 61 (2005), pp. 103–110.
  • P. Van Nieuwenhuyse, P. Demaeght, W. Dermauw, M. Khalighi, C.V. Stevens, B. Vanholme, L. Tirry, P. Lümmen, and T. Van Leeuwen, On the mode of action of bifenazate: New evidence for a mitochondrial target site, Pest. Biochem. Physiol. 104 (2012), pp. 88–95.
  • J. Devillers and M.H. Pham-Delègue, Honey Bees: Estimating the Environmental Impact of Chemicals, Taylor & Francis, London, 2002.
  • A.R. Katritzky, CODESSA PRO User’s Manual, University of Florida, Gainesville, 2005.
  • J. Devillers, AUTOLOGP™: A computer tool for simulating n-octanol-water partition coefficients, Analusis 27 (1999), pp. 23–29.
  • C.W. Yap, PaDEL descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.