202
Views
1
CrossRef citations to date
0
Altmetric
18th International Conference on QSAR in Environmental and Health Sciences (QSAR 2018)

Application of fragment based virtual screening towards inhibition of bacterial N-acetyglucosaminidase$

, , , , , & show all
Pages 647-660 | Received 13 Jul 2018, Accepted 20 Jul 2018, Published online: 30 Aug 2018

References

  • J. Davies and D. Davies, Origins and evolution of antibiotic resistance, Microbiol. Mol. Biol. Rev. 74 (2010), pp. 417‐433.
  • W. Vollmer, D. Blanot, and M.A. de Pedro, Peptidoglycan structure and architecture, FEMS Microbiol. Rev. 32 (2008), pp. 149–167.
  • A.L. Lovering, S.S. Safadi, and N.C.J. Strynadka, Structural perspective of peptidoglycan biosynthesis and assembly, Ann. Rev. Biochem. 81 (2012), pp. 451–478.
  • M.G. Pinho, M. Kjos, and J.V. Veening, How to get (a)round: Mechanisms controlling growth and division of coccoid bacteria, Nat. Rev. Microbiol. 9 (2013), pp. 601–614.
  • A. Typas, M. Banzhaf, C.A. Gross, and W. Vollmer, From the regulation of peptidoglycan synthesis to bacterial growth and morphology, Nat. Rev. Microbiol. 10 (2011), pp. 123–136.
  • W. Vollmer, B. Joris, P. Charlier, and S. Foster, Bacterial peptidoglycan(murein) hydrolases, FEMS Microbiol. Rev. 32 (2008), pp. 259–286.
  • S. Zoll, B. Patzold, M. Schlag, F. Gotz, H. Kalbacher, and T. Stehle, Structural basis of cell wall cleavage by a staphylococcal autolysin, PLoS Pathog. 6 (2010). Available at http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1000807.
  • R. Biswas, L. Voggu, U.K. Simon, P. Hentschel, G. Thumm, and F. Gotz, Activity of the major staphylococcal autolysin Atl, FEMS Microbiol. Lett. 259 (2006), pp. 260–268.
  • W. Hashimoto, A. Ochiai, K. Momma, T. Itoh, B. Mikami, Y. Maruyama, and K. Murata, Crystal structure of the glycosidase family 73 peptidoglycan hydrolase FlgJ, Biochem. Biophys. Res. Commun. 381 (2009), pp. 16–21.
  • M. Bublitz, L. Polle, C. Holland, D.W. Heinz, M. Nimtz, and W.D. Schubert, Structural basis for autoinhibition and activation of Auto, a virulence-associated peptidoglycan hydrolase of Listeria monocytogenes, Mol. Microbiol. 71 (2009), pp. 1509–1522.
  • X.H. Bai, H.J. Chen, Y.L. Jiang, Z. Wen, Y. Huang, W. Cheng, Q. Li, L. Qi, J.R. Zhang,Y. Chen, and C.Z. Zhou, Structure of pneumococcal peptidoglycan hydrolase LytB reveals insights into the bacterial cell wall remodeling and pathogenesis, J. Biol. Chem. 289 (2014), pp. 23403–23416.
  • A. Lipski, M. Herve, V. Lombard, D. Nurizzo, D. Mengin-Lecreulx, Y. Bourne, and F. Vincent, Structural and biochemical characterization of the beta-N-acetylglucosaminidase from Thermotoga maritima: Toward rationalization of mechanistic knowledge in the GH73 family, Glycobiology 25 (2015), pp. 319–330.
  • P. Zaloba, B.A. Bailey-Elkin, M. Derksen, and B.L. Mark, Structural and biochemical insights into the peptidoglycan hydrolase domain of FlgJ from Salmonella typhimurium, Plos One 11 (2016). Available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149204.
  • E. Tamai, H. Sekiya, E. Goda, N. Makihata, J. Maki, H. Yoshida, and S. Kamitori, Structural and biochemical characterization of the Clostridium perfringens autolysin catalytic domain, FEBS Lett. 591 (2017), pp. 231–239.
  • M. Mihelič, K. Vlahoviček-Kahlina, M. Renko, S. Mesnage, A. Doberšek, A. Taler-Verčič, and D. Turk, The mechanism behind the selection of two different cleavage sites in NAG-NAM polymers, IUCrJ. 4 (2017), pp. 185–198.
  • S. Nayyab, M. O’Connor, J. Brewster, J. Gravier, M. Jamieson, E. Magno, R.D. Miller, D. Phelan, K. Roohani, P. Williard, A. Basu, and C.W. Reid, Diamide inhibitors of the Bacillus subtilis N‑acetylglucosaminidase LytG that exhibit antibacterial activity, ACS Infect. Dis. 3 (2017), pp. 421–427.
  • F.M. Büttner, S. Zoll, M. Nega, F. Götz, and T. Stehle, Structure-function analysis of Staphylococcus aureus amidase reveals the determinants of peptidoglycan recognition and cleavage, J. Biol. Chem. 280 (2014), pp. 11083–11094.
  • P.Y. Chung and Y.S. Toh, Anti-biofilm agents: Recent breakthrough against multi-drug resistant Staphylococcus aureus, Pathog. Dis. 70 (2014), pp. 231–239.
  • F.A. Herlihey, P.J. Moynihan, and A.J. Clarke, The essential protein for bacterial flagella formation FlgJ functions as a β-N-acetylglucosaminidase, J. Biol. Chem. 289 (2014), pp. 31029–31042.
  • K.J. Yokoi, K. Sugahara, A. Iguchi, G. Nishitani, M. Ikeda, T. Shimada, N. Inagaki, A. Yamakawa, A. Taketo, and K. Kodaira, Molecular properties of the putative autolysin Atl(WM) encoded by Staphylococcus warneri M: Mutational and biochemical analyses of the amidase and glucosaminidase domains, Gene 416 (2008), pp. 66–76.
  • N. Inagaki, A. Iguchi, T. Yokoyama, K.J. Yokoi, Y. Ono, A. Yamakawa, A. Taketo, and K. Kodaira, Molecular properties of the glucosaminidase AcmA from Lactococcus lactis MG1363: Mutational and biochemical analyses, Gene 447 (2009), pp. 61–71.
  • Y. Maruyama, A. Ochiai, T. Itoh, B. Mikami, W. Hashimoto, and K. Murata, Mutational studies of the peptidoglycan hydrolase FlgJ of Sphingomonas sp. strain A1, J. Basic Microbiol. 50 (2010), pp. 311–317.
  • J. Borišek, S. Pintar, M. Ogrizek, D. Turk, A. Perdih, and M. Novič, A water-assisted catalytic mechanism in glycoside hydrolases demonstrated on the Staphylococcus aureus autolysin E, ACS Catal. 8 (2018), pp. 4334–4345.
  • C.W. Murray and D.C Rees, The rise of fragment-based drug discovery, Nat. Chem. 3 (2009), pp.187–192.
  • D.A. Erlanson, W. Jahnke, R. Mannhold, H. Kubinyi, and G. Folkers, Fragment-based Drug Discovery: Lessons and Outlook, John Wiley & Sons, Weinheim, 2016.
  • A. Chavanieu and M. Pugnière, Developments in SPR fragment screening, Expert Opin. Drug Discov. 11 (2016), pp. 489–499.
  • K. Retra, H. Irth and J.E. van Muijlwijk-Koezen, Surface plasmon resonance biosensor analysis as a useful tool in FBDD, Drug Discov. Today Technol. 7 (2010), pp. 181–187.
  • J. Borišek, S. Pintar, M. Ogrizek, S. Golič Grdadolnik, V. Hodnik, D. Turk, and M. Novič. Discovery of benzamidopiperidinylureidophenyls as prospective inhibitors of bacterial autolysin E from Staphylococcus aureus, accepted. Available at: https://doi.org/10.1080/14756366.2018.1493474
  • Discovery Studio Client 4.1.0. 14169, Dassault Systèmes BIOVIA, San Diego, 2014; software available at http://accelrys.com.
  • B.R. Brooks, C.L. Brooks III, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York, and M. Karplus, CHARMM: The biomolecular simulation program, J. Comp. Chem. 30 (2009), pp. 1545–1615.
  • T. Tibaut, J. Borišek, M. Novič, and D. Turk, Comparison of in silico tools for binding site prediction applied for structure-based design of autolysin inhibitors, SAR QSAR Environ. Res. 7 (2016), pp. 573–587.
  • Make Receptor 3.2.0.2, OpenEye Scientific Software, Inc., Santa Fe, NM, USA, 2017; software available at www.eyesopen.com.
  • P.C. Hawkins, A.G. Skillman, G.L. Warren, B.A. Ellingson, and M.T. Stahl, Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database, J. Chem. Inf. Model. 50 (2010), pp. 572–584.
  • P.C. Hawkins and A. Nicholis, Conformer generation with OMEGA: Learning from the data set and the analysis of failures, J. Chem. Inf. Model. 52 (2012), pp. 2919–2936.
  • OMEGA 2.5.1.4. OpenEye Scientific Software, Inc., Santa Fe, NM, 2017; software available at www.eyesopen.com.
  • M. McGann, FRED and HYBRID docking performance on standardized datasets, J. Comput. Aided Mol. Des. 26 (2012), pp. 897–906.
  • G.B. McGaughey, R.P. Sheridan, C.I. Bayly, J.C. Culberson, C. Kreatsoulas, S. Lindsley, V. Maiorov, J.F. Truchon, and W.D. Cornell, Comparison of topological, shape, and docking methods in virtual screening, J. Chem. Inf. Model. 47 (2007), pp. 1504–1519.
  • M. McGann, FRED pose prediction and virtual screening accuracy, J. Chem. Inf. Model. 51 (2011), pp. 578–596.
  • M.R. McGann, H.R. Almond, A. Nicholls, J.A. Grant, and F.K. Brown, Gaussian docking functions, Biopolymers 68 (2003), pp. 76–90.
  • FRED 3.2.0.2. OpenEye Scientific Software, Inc., Santa Fe, NM, 2017; software available at www.eyesopen.com.
  • VIDA 4.3.0.4. OpenEye Scientific Software, Inc., Santa Fe, NM, 2017; software available at www.eyesopen.com.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.