509
Views
13
CrossRef citations to date
0
Altmetric
18th International Conference on QSAR in Environmental and Health Sciences (QSAR 2018)

2D and 3D structure–activity modelling of mosquito repellents: a review$

Pages 693-723 | Received 15 Jun 2018, Published online: 17 Sep 2018

References

  • D. Fontenille, C. Lagneau, S. Lecollinet, R. Lefait-Robin, M. Setbon, B. Tirel, and A. Yébakima, La lutte Antivectorielle en France, IRD Edition, Marseille, 2009.
  • D. Charlwood, Did Herodotus describe the first airborne use of mosquito repellents?, Trends Parasitol. 19 (2003), pp. 555–556.
  • X. Valderrama, J.G. Robinson, A.B. Attygale, and T. Eisner, Seasonal anointment with millipedes in a wild primate: A chemical defense against insects?, J. Chem. Ecol. 26 (2000), pp. 2781– 2790.
  • P.J. Weldon, J.R. Aldrich, J.A. Klun, J.E. Oliver, and M. Debboun, Benzoquinones from millipedes deter mosquitoes and elicit self-anointing in capuchin monkeys (Cebus spp.), Naturwissenschaften 90 (2003), pp. 301–304.
  • Anonymous, Mosquito repellent market by source (synthetic chemical derived market and plant derived chemical) by product (coil, spray, cream & oil, vaporizer mat and others), and by distribution channel (large retail stores, small retail stores, specialty stores and online distribution channel): Global industry perspective, comprehensive analysis and forecast, 2016–2022, Zion Market Research, Report 890, 2017, p. 110.
  • Anonymous, N,N-diethyl-meta-toluamide (DEET). Risk characterization document, California EPA, Department of Pesticide Regulation, RCD 00-01, 2000.
  • V. Chen-Hussey, R. Behrens, and J.G. Logan, Assessment of methods used to determine the safety of the topical insect repellent N,N-diethyl-m-toluamide (DEET), Parasites Vectors 7 (2014), p. 173.
  • R.E. Coleman, L.L. Robert, L.W. Roberts, J.A. Glass, D.C. Seeley, A. Laughinghouse, P.V. Perkins, and R.A. Wirtz, Laboratory evaluation of repellents against four anopheline mosquitoes (Diptera: Culicidae) and two phlebotomine sand flies (Diptera: Psychodidae), J. Med. Entomol. 30 (1993), pp. 499–502.
  • N.M. Stanczyk, J.F.Y. Brookfield, L.M. Field, and J.G. Logan, Aedes aegypti mosquitoes exhibit decreased repellency by DEET following previous exposure, PLoS ONE 8 (2013), p. e54438.
  • L. Goodyer and R.H. Behrens, Short report: The safety and toxicity of insect repellents, Am. J. Trop. Med. Hyg. 59 (1998), pp. 323–324.
  • G. Koren, D. Matsui, and B. Bailey, DEET-based insect repellents: Safety implications for children and pregnant and lactating women, Can. Med. Assoc. J. 169 (2003), pp. 209–212.
  • C. Goislard, Les répulsifs anti-moustiques à l’officine, Thèse Pharmacie, UFR Sciences Pharmaceutiques et Ingéniérie de la Santé, Université d’Angers, 2012.
  • W. Karcher and J. Devillers, Practical Applications of Quantitative Structure–Activity Relationships (QSAR) in Environmental Chemistry and Toxicology, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.
  • J. Devillers, Endocrine Disruption Modeling, CRC Press, Boca Raton, FL, 2009.
  • J. Devillers, Juvenile Hormones and Juvenoids: Modeling Biological Effects and Environmental Fate, CRC Press, Boca Raton, FL, 2013.
  • C.M. Chang, Y.H. Ou, T.C. Liu, S.Y. Lu, and M.K. Wang, A quantitative structure–activity relationship approach for assessing toxicity of mixture of organic compounds, SAR QSAR Environ. Res. 27 (2016), pp. 441–453.
  • J.P. Doucet, E. Papa, A. Doucet-Panaye, and J. Devillers, QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti, SAR QSAR Environ. Res. 28 (2017), pp. 451–470.
  • S. Bhargava, N. Adhikari, S.A. Amin, K. Das, S. Gayen, and T. Jha, Hydroxyethylamine derivatives as HIV-1 protease inhibitors: A predictive QSAR modelling study based on Monte Carlo optimization, SAR QSAR Environ. Res. 28 (2017), pp. 991–1009.
  • L.A.O. Roadhouse, Laboratory studies on insect repellency, Can. J. Zool. 31 (1953), pp. 535–546.
  • E.T. McCabe, W.F. Barthel, S.I. Gertler, and S.A. Hall, Insect repellents. III. N,N-diethylamides, J. Org. Chem.19 (1954), pp. 493–498.
  • H.K. Gouck, S.A. Hall, C.N. Smith, and I.H. Gilbert, Repellency of homologous series of cyclohexane aliphatic acids and amides, J. Econ. Entomol. 50 (1957), pp. 175–177.
  • B.H. Alexander and M. Beroza, Aliphatic amides of cyclic amines and tolyl maleimides as mosquito repellents, J. Econ. Entomol. 56 (1963), pp. 58–60.
  • W.F. Barthel, J. Leon, and S.A. Hall, Insect repellents. I. Esters of mandelic and substituted mandelic acids, J. Org. Chem. 19 (1954), pp. 485–489.
  • J. Leon, W.F. Barthel, and S.A. Hall, Insect repellents. II. Esters of 1- hydroxycyclohexanecarboxylic acid, J. Org. Chem. 19 (1954), pp. 490–492.
  • C.W.O. Bunker and A.D. Hirschfelder, Mosquito repellents, Am. J. Trop. Med. Hyg. 5 (1925), pp. 359–383.
  • H.L. Johnson, W.A. Skinner, H.I. Maibach, and T.R. Pearson, Repellent activity and physical properties of ring-substituted N,N-diethylbenzamides, J. Econ. Entomol. 60 (1967), pp. 173–176.
  • H.L. Johnson, W.A. Skinner, D. Skidmore, and I. Maibach, Topical mosquito repellents. II. Repellent potency and duration in ring-substituted N,N-dialkyl- and –aminoalkylbenzamides, J. Med. Chem. 11 (1968), pp 1265–1268.
  • P. Tsakotellis, H.L. Johnson, W.A. Skinner, D. Skidmore, and H.I. Maibach, Topical mosquito repellents III: Carboxamide acetals and ketals and related carbonyl addition derivatives, J. Pharm. Sci. 60 (1971), pp. 84–89.
  • F. Gualtieri, H. Johnson, H. Maibach, D. Skidmore, and W. Skinner, Topical mosquito repellents IV: Alicyclic, bicyclic, and unsaturated acetals, aminoacetals, and carboxamide acetals, J. Pharm. Sci. 61 (1972), pp. 577–580.
  • F. Gualtieri, H. Johnson, H. Tong, H. Maibach, D. Skidmore, W. Skinner, Topical mosquito repellents V: Benzyl ethers, J. Pharm. Sci. 62 (1973), pp. 487–489.
  • F. Gualtieri, P. Tsakotellis, W. Skinner, H. Johnson, D. Skidmore, and H.I. Maibach, Topical mosquito repellents VI: Sulfanamides and quinolone-4-carboxylic acid derivatives, J. Pharm. Sci. 62 (1973), pp. 849–851.
  • H. Johnson, J. DeGraw, J. Engstrom, W.A. Skinner, V.H. Brown, D. Skidmore, and H.I. Maibach, Topical mosquito repellents VII: Alkyl triethylene glycol monoethers, J. Pharm. Sci. 64 (1975), pp. 693–695.
  • H.C. Tong, D. Skidmore, H.I. Maibach, and W.A. Skinner, Topical mosquito repellents VIII: Substituted 2-thio-4-thiazolidineones and 2,4-thiazolidinediones, Mosq. News 35 (1975), pp. 76–82.
  • W.A. Skinner, H.T. Crawford, L.C. Rutledge, and M.A. Moussa, Topical mosquito repellents XI: Carbamates derived from N,N’-disubstituted diamines, J. Pharm. Sci. 68 (1979), pp. 390–391.
  • W.A. Skinner, H.T. Crawford, L.C. Rutledge, and M.A. Moussa, Topical mosquito repellents XII: N-substituted ureas and cyclic ureas, J. Pharm. Sci. 68 (1979), pp. 391–392.
  • W.A. Skinner, H.T. Crawford, H. Tong, D. Skidmore, and H.I. Maibach, Topical mosquito repellents IX: Quinolines, isoquinolines, and quinoxalines, J. Pharm. Sci. 65 (1976), pp. 1404–1407.
  • W.A. Skinner, H.T. Crawford, D. Skidmore, and H.I. Maibach, Topical mosquito repellents X: 2-oxazolidones, J. Pharm. Sci. 66 (1977), pp. 587–589.
  • H.B. Rayner and R.H. Wright, Far infrared spectra of mosquito repellents, Can. Entomol. 98 (1966), pp. 76–80.
  • L.R. Garson and M.E. Winnike, Relationships between insect repellency and chemical and physical parameters. A review, J. Med. Ent. 5 (1968), pp. 339–352.
  • L.C. Rutledge, Some corrections to the record on insect repellents and attractants, J. Am. Mosq. Cont. Assoc. 4 (1988), pp. 414–425.
  • M.V.S. Suryanarayana, K.S. Pandey, S. Prakash, C.D. Raghuveeran, R.S. Dangi, R.V. Swamy, and K.M. Rao, Structure activity relationship studies with mosquito repellent amides, J. Pharm. Sci. 80 (1991), pp. 1055–1057.
  • J.C. Dearden, M.T.D. Cronin, and K.L.E. Kaiser, How not to develop a quantitative structure–activity or structure–property relationship (QSAR/QSPR), SAR QSAR Environ. Res. 20 (2009), pp. 241–266.
  • A.R. Katritzky, D.A. Dobchev, I. Tulp, M. Karelson, and D.A. Carlson, QSAR study of mosquito repellents using CODESSA Pro, Bioorg. Med. Chem. Lett. 16 (2006), pp. 2306–2311.
  • A.R. Katritzky, CODESSA PRO User’s Manual, University of Florida, Gainesville, 2005.
  • R. Natarajan, S.C. Basak, D. Mills, J.J. Kraker, and D.M. Hawkins, Quantitative structure–activity relationship modeling of mosquito repellents using calculated descriptors, Croat. Chem. Acta 81 (2008), pp. 333–340.
  • A.R. Katritzky, Z. Wang, S. Slavov, D. Dobchev, C.D. Hall, M. Tsikolia, U.R. Bernier, N.M. Elejalde, G.G. Clark, and K.J. Linthicum, Novel carboxamides as potential mosquito repellents, J. Med. Ent. 47 (2010), pp. 924–938.
  • J. Devillers, Neural Networks in QSAR and Drug Design, Academic Press, London, 1996.
  • J. Devillers, D. Domine, C. Guillon, and W. Karcher, Simulating lipophilicity of organic molecules with a back-propagation neural network, J. Pharm. Sci. 87 (1998), pp. 1086–1090.
  • J. Devillers, Prediction of toxicity of organophosphorus insecticides against the midge, Chironomus riparius, via a QSAR neural network model integrating environmental variables, Toxicol. Methods 10 (2000), pp. 69–79.
  • J. Devillers, M.H. Pham-Delègue, A. Decourtye, H. Budzinski, S. Cluzeau, and G. Maurin, Modeling the acute toxicity of pesticides to Apis mellifera, Bull. Insect. 56 (2003), pp. 103–109.
  • J. Devillers, Linear versus nonlinear QSAR modeling of the toxicity of phenol derivatives to Tetrahymena pyriformis, SAR QSAR Environ. Res. 15 (2004), pp. 237–249.
  • J. Devillers, A. Doucet-Panaye, and J.P. Doucet, Structure–activity relationship (SAR) modelling of mosquito larvicides, SAR QSAR Environ. Res. 26 (2015), pp. 263–278.
  • S. Bitam, M. Hamadache, and S. Hanini, QSAR model for prediction of the therapeutic potency of N-benzylpiperidine derivatives as AChE inhibitors, SAR QSAR Environ. Res. 28 (2017), pp. 471–489.
  • P. Wang, X. Xu, S. Liao, J. Song, G. Fan, S. Chen, and Z. Wang, Quantitative structure–activity relationship study of amide mosquito repellents, SAR QSAR Environ. Res. 28 (2017), pp. 341–353.
  • A.R. Katritzky, Z. Wang, S. Slavov, M. Tsikolia, D. Dobchev, N.G. Akhmedov, C.D. Hall, U.R. Bernier, G.G. Clark, and K.J. Linthicum, Synthesis and bioassay of improved mosquito repellents predicted from chemical structure, Proc. Natl. Acad. Sci. USA 105 (2008), pp. 7359–7364.
  • K. Sukumar, M.J. Perich, and L.R. Boobar, Botanical derivatives in mosquito control: A review, J. Am. Mosq. Control Assoc. 7 (1991), pp. 210–237.
  • M.F. Maia and S.J. Moore, Plant-based insect repellents: A review of their efficacy, development and testing, Malaria J. 10 (2011), pp. 1–15.
  • J.U. Rehman, A. Ali, and I.A. Khan, Plant based products: Use and development as repellents against mosquitoes: A review, Fitoterapia 95 (2014), pp. 65–74.
  • R. Tisgratog, U. Sanguanpong, J.P. Grieco, R. Ngoen-Kluan, and T. Chareonviriyaphap, Plants traditionally used as mosquito repellents and the implication for their use in vector control, Acta Trop. 157 (2016), pp. 136–144.
  • R. Pavela and G. Benelli, Ethnobotanical knowledge on botanical repellents employed in the African region against mosquito vectors – A review, Experim. Parasitol. 167 (2016), pp. 103–108.
  • Y. Trongtokit, Y. Rongsriyam, N. Komalamisra, and C. Apiwathnasorn, Comparative repellency of 38 essential oils against mosquito bites, Phytother. Res. 19 (2005), pp. 303–309.
  • B.S. Park, W.S. Choi, J.H. Kim, K.H. Kim, and S.E. Lee, Monoterpenes from thyme (Thymus vulgaris) potential mosquito repellents, J. Am. Mosq. Control Assoc. 21 (2005), pp. 80–83.
  • L.S. Nerio, J. Olivero-Verbel, and E. Stashenko, Repellent activity of essential oils: A review, Bioresource Technol. 101 (2010), pp. 372–378.
  • Z. Wang, J. Song, J. Chen, Z. Song, S. Shang, Z. Jiang, and Z. Han, QSAR study of mosquito repellents from terpenoid with a six-member ring, Bioorg. Med. Chem. Let. 18 (2008), pp. 2854–2859.
  • J. Song, Z. Wang, A. Findlater, Z. Han, Z. Jiang, J. Chen, W. Zheng, and S. Hyde, Terpenoid mosquito repellents: A combined DFT and QSAR study, Bioorg. Med. Chem. Let. 23 (2013), pp. 1245–1248.
  • R. García-Domenech, J. Aguliera, A. El Moncef, S. Pocovi, and J. Gálvez, Application of molecular topology to the prediction of mosquito repellents of a group of terpenoid compounds, Mol. Divers. 14 (2010), pp. 321–329.
  • J. Devillers and A.T. Balaban, Topological Indices and Related Descriptors in QSAR and QSPR, Gordon and Breach Science Publishers, The Netherlands, 1999.
  • G. Paluch, J. Grodnitzky, L. Bartholomay, and J. Coats, Quantitative structure–activity relationship of botanical sesquiterpenes: Spatial and contact repellency to the yellow fever mosquito Aedes aegypti, J. Agric. Food Chem. 57 (2009), pp. 7618–7625.
  • R. García-Domenech, P. García-Mujica, Ú. Gil, C. Casanova, J. Mireilli Beltrán, and J. Gálvez, Búsqueda de modelos QSAR para la actividad repelente de sesquiterpenos naturales frente al mosquito de la Fiebre Amarilla, Aedes aegypti, AFINIDAD 67 (2010), pp. 187–192.
  • A.K. Bhattacharjee, Pharmacophore modeling applied to mosquito-borne diseases, in Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases, J. Devillers, ed., CRC Press, Boca Raton, FL, 2018, pp. 139–170.
  • F. Caporuscio and A. Tafi, Pharmacophore modelling: A forty year old approach and its modern synergies, Curr. Med. Chem. 18 (2011), pp. 2543–2553.
  • M.A. Azam and J. Thathan, Pharmacophore generation, atom-based 3D-QSAR and molecular dynamics simulation analyses of pyridine-3-carboxamide-6-yl-urea analogues as potential gyrase B inhibitors, SAR QSAR Environ. Res. 28 (2017), pp. 275–296.
  • P.K. Singh and O. Silakari, Molecular dynamics and pharmacophore modelling studies of different subtype (ALK and EGFR (T790M)) inhibitors in NSCLC, SAR QSAR Environ. Res. 28 (2017), pp. 221–223.
  • M. Muchtaridi, H.N. Syahidah, A. Subarnas, M. Yusuf, S.D. Bryant, and T. Langer, Molecular docking and 3D-pharmacophore modeling to study the interactions of chalcone derivatives with estrogen receptor alpha, Pharmaceuticals 10 (2017), p. 81.
  • R.B. Aher and K. Roy, Exploring the structural requirements in multiple chemical scaffolds for the selective inhibition of Plasmodium falciparum calcium-dependent protein kinase-1 (PfCDPK-1) by 3D-pharmacophore modelling, and docking studies, SAR QSAR Environ. Res. 28 (2017), pp. 390–414.
  • K. Sangeetha, R.P. Sasikala, and K.S. Meena, Pharmacophore modeling, virtual screening and molecular docking of ATPase inhibitors of HSP70, Comput. Biol. Chem. 70 (2017), pp. 164–174.
  • S.E. Radhakrishnan, M.F.A. Rosli, A.M. Romli, T.N. Nyawai, and M.R. Asaruddin, Antioxidant properties of 5 herbal plants based of pharmacophore modelling, J. Innov. Appl. Pharm. Sci. 1 (2016), pp. 26–33.
  • S.S. Bhayye, K. Roy, and A. Saha, Pharmacophore generation, atom-based 3D-QSAR, HQSAR and activity cliff analyses of benzothiazine and deazaxanthine derivatives as dual A2A antagonists/MAO‑B inhibitors, SAR QSAR Environ. Res. 27 (2016), pp. 183–202.
  • T. Kaserer, K.R. Beck, M.Akram, A. Odermatt, and D. Schuster, Pharmacophore models and pharmacophore-based virtual screening: Concepts and applications exemplified on hydroxysteroid dehydrogenases, Molecules 20 (2015), pp. 22799–22832.
  • A.K. Saxena, J. Devillers, A.R.R. Pery, R. Beaudouin, V.M. Balaramnavar, and S. Ahmed, Modelling the binding affinity of steroids to zebrafish sex hormone-binding globulin, SAR QSAR Environ. Res. 25 (2014), pp. 407–421.
  • D. Ma, A.K. Bhattacharjee, R.K. Gupta, and J.M. Karle, Predicting mosquito repellent potency of N,N-diethyl-m-toluamide (DEET) analogs from molecular electronic properties, Am. J. Trop. Med. Hyg. 60 (1999), pp. 1–6.
  • A.K. Bhattacharjee, R.K. Gupta, D. Ma, and J.M. Karle, Molecular similarity analysis between insect juvenile hormone and N,N-diethyl-m-toluamide (DEET) analogs may aid design of novel insect repellents, J. Mol. Recognit. 13 (2000), pp. 213–220.
  • A.K. Bhattacharjee and R.K. Gupta, Analysis of molecular stereoelectronic similarity between N,N-diethyl-m-toluamide (DEET) analogs and insect juvenile hormone to develop a model pharmacophore for insect repellent activity, J. Am. Mosq. Contr. Assoc. 21 (2005), pp. 23–29.
  • A.K. Bhattacharjee, In silico stereoelectronic profile and pharmacophore similarity analysis of juvenile hormone, juvenile hormone mimics (IGRs) and insect repellents may aid discovery and design of novel arthropod repellents, in Juvenile Hormones and Juvenoids. Modeling Biological Effects and Environmental Fate, J. Devillers, ed., CRC Press, Boca Raton, FL, 2013, pp. 297–331.
  • A.K. Bhattacharjee, W. Dheranetra, D.A. Nichols, and R.K. Gupta, 3D pharmacophore model for insect repellent activity and discovery of new repellent candidates, QSAR Comb. Sci. 24 (2005), pp. 593–602.
  • J.B. Bhonsle, A.K. Bhattacharjee, and R.K. Gupta, Novel semi-automated methodology for developing highly predictive QSAR models: Application for development of QSAR models for insect repellent amides, J. Mol. Model. 13 (2007), pp. 179–208.
  • A. Bhattacharjee, In silico stereo-electronic analysis of PMD (p-menthane-3-8-diol) and its derivatives for pharmacophore development may aid discovery of novel insect repellents, Curr. Comput. Aided Drug Des. 9 (2013), pp. 308–316.
  • J.A. Klun, W.F. Schmidt, and M. Debboun, Stereochemical effects in an insect repellent, J. Med. Entomol. 38 (2001), pp. 809–812.
  • J.A. Klun, A. Khrimian, A. Margaryan, M. Kramer, and M. Debboun, Synthesis and repellent efficacy of a new chiral piperidine analog: Comparison with Deet and Bayrepel activity in human-volunteer laboratory assays against Aedes aegypti and Anopheles stephensi, J. Med. Entomol. 40 (2003), pp. 293–299.
  • R. Natarajan, S.C. Basak, A.T. Balaban, J.A. Klun, and W.F. Schmidt, Chirality index, molecular overlay and biological activity of diastereoisomeric mosquito repellents, Pest. Manag. Sci. 61 (2005), pp. 1193–1201.
  • R. Natarajan, S.C. Basak, and T.S. Neumann, Novel approach for the numerical characterization of molecular chirality, J. Chem. Inf. Model. 47 (2007), pp. 771–775.
  • S.C. Basak, R. Natarajan, W. Nowak, P. Miszta, and J.A. Klun, Three dimensional structure–activity relationships (3D-QSAR) for insect repellency of diastereoisomeric compounds: A hierarchical molecular overlay approach, SAR QSAR Environ. Res. 18 (2007), pp. 237–250.
  • J. Fan, F. Francis, Y. Liu, J.L. Chen, and D.F. Cheng, An overview of odorant-binding protein functions in insect peripheral olfactory reception, Genet. Mol. Res. 10 (2011), pp. 3056–3069.
  • W.S. Leal, Odorant receptors in insects: Roles of receptors, binding proteins, and degrading enzymes, Ann. Rev. Entomol. 58 (2013), pp. 373–391.
  • N.F. Brito, M.F. Moreira, and A.C.A. Melo, A look inside odorant-binding proteins in insect chemoreception, J. Insect Physiol. 95 (2016), pp. 51–56.
  • C. Montell and L.J. Zwiebel, Mosquito sensory systems in Advances in Insect Physiology, A.S. Raikhel, ed., Academic Press, London, 2016, pp. 293–326.
  • M. Manoharan, M. Ng Fuk Chong, A. Vaitinadapoule, E. Frumence, R. Sowdhamini, and B. Offmann, Comparative genomics of odorant binding proteins in Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus, Genome Biol. Evol. 5 (2013), pp. 163–180.
  • F. Lombardo, M. Salvemini, C. Fiorillo, T. Nolan, L.J. Zwiebel, J.M. Ribeiro, and B. Arcà, Deciphering the olfactory repertoire of the tiger mosquito Aedes albopictus, BMC Genom. 18 (2017), p. 770.
  • H. Biessmann, Q.K. Nguyen, D. Le, and M.F. Walter, Microarray-based survey of a subset of putative olfactory genes in the mosquito Anopheles gambiae, Insect Mol. Biol. 14 (2005), pp. 575–589.
  • M.S. Sengul and Z. Tu, Identification and characterization of odorant-binding protein 1 gene from the Asian malaria mosquito, Anopheles stephensi, Insect Mol. Biol. 19 (2010), pp. 1365–2583.
  • K.E. Tsitsanou, T. Thireou, C.E. Drakou, K. Koussis, M.V. Keramioti, D.D. Leonidas, E. Eliopoulos, K. Iatrou, and S.E. Zographos, Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: Implication for structure-based design of novel mosquito repellents, Cell. Mol. Life Sci. 69 (2012), pp. 283–297.
  • S.E. Zographos, E. Eliopoulos, T. Thireou, and K.E. Tsitsanou, OBP structure-aided repellent discovery: An emerging tool for prevention of mosquito-borne diseases, in Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases, J. Devillers, ed., CRC Press, Boca Raton, FL, 2018, pp. 65–105.
  • E.J. Murphy, J.C. Booth, F. Davrazou, A.M. Port, and D.N. Jones, Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: Implications for the mode of action of n,n-diethyl-3-methylbenzamide (DEET), J. Biol. Chem. 288 (2013), pp. 4475–4485.
  • R.S. Affonso, A.P. Guimarães, A.A. Oliveira, G.B.C. Slana, and T.C.C. França, Applications of molecular modeling in the design of new insect repellents targeting the odorant binding protein of Anopheles gambiae, J. Braz. Chem. Soc. 24 (2013), pp. 473–482.
  • C.E. Drakou, K.E. Tsitsanou, C. Potamitis, D. Fessas, M. Zervou, and S.E. Zographos, The crystal structure of the AgamOBP1•Icaridin complex reveals alternative binding modes and stereo-selective repellent recognition, Cell Mol. Life Sci. 74 (2017), pp. 319–338.
  • T. Thireou, G. Kythreoti, K.E. Tsitsanou, K. Koussis, C.E. Drakou, J. Kinnersley, T. Kröber, P.M. Guerin, J.J. Zhou, K. Iatrou, E. Eliopoulos, and S.E. Zographos, Identification of novel bioinspired synthetic mosquito repellents by combined ligand-based screening and OBP-structure-based molecular docking, Insect Biochem. Molec. Biol. 98 (2018), pp. 48–61.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 30 (2009), pp. 2785–2791.
  • P.V. Oliferenko, A.A. Oliferenko, G.I. Poda, D.I. Osolodkin, G.G. Pillai, U.R. Bernier, M. Tsikolia, N.M. Agramonte, G.G. Clark, K.L. Linthicum, and A.R. Katritzky, Promising Aedes aegypti repellent chemotypes identified through integrated QSAR, virtual screening, synthesis, and bioassay, PLoS ONE 8 (2013), p. e64547.
  • P.V. Oliferenko, A.A. Oliferenko, G. Poda, G.G. Pillai, U.R. Bernier, N.M. Agramonte, and K.J. Linthicum, Insect olfactory system as target for computer-aided design of mosquito repellents, in Computational Design of Chemicals for the Control of Mosquitoes and their Diseases, J. Devillers, ed., CRC Press, Boca Raton, FL, 2018, pp. 39–63.
  • V.A. Palyulin, E.V. Radchenko, and N.S. Zefirov, Molecular field topology analysis method in QSAR studies of organic compounds, J. Chem. Inf. Comput. Sci. 40 (2000), pp. 659–667.
  • B.X. Shi, F.R. Chen, and X. Sun, Structure-based modelling, scoring, screening, and in vitro kinase assay of anesthetic pkc inhibitors against a natural medicine library, SAR QSAR Environ. Res. 28 (2017), pp. 151–163.
  • A.K. Saxena, J. Devillers, S.S. Bhunia, and E. Bro, Modelling inhibition of avian aromatase by azole pesticides, SAR QSAR Environ. Res. 26 (2015), pp. 757–782.
  • J.P. Doucet and A. Panaye, Three Dimensional QSAR: Applications in Pharmacology and Toxicology, CRC Press, Boca Raton, FL, 2010.
  • P. Miszta, S.C. Basak, R. Natarajan, and W. Nowak, How computational studies of mosquito repellents contribute to the control of vector-borne diseases, Curr. Comput.-Aided Drug Design 9 (2013), pp. 300–307.
  • G. Paluch, L. Bartholomay, and J. Coats, Mosquito repellents: A review of chemical structure diversity and olfaction, Pest. Manag. Sci. 66 (2010), pp. 925–935.
  • G.M. Attardo, I.A. Hansen, and A.S. Raikhel, Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny, Insect Biochem. Molec. Biol. 35 (2005), pp. 661–675.
  • M.F. Bowen, The sensory physiology of host-seeking behavior in mosquitoes, Annu. Rev. Entomol. 36 (1991), pp. 139–158.
  • J.G. Logan, M.A. Birkett, S.J. Clark, S. Powers, N.J. Seal, L.J. Wadhams, A.J. Mordue (Luntz), and J.A. Pickett, Identification of human-derived volatile chemicals that interfere with attraction of Aedes aegypti mosquitoes, J. Chem. Ecol. 34 (2008), pp. 308–322.
  • U.R. Bernier, D.L. Kline, D.R. Barnard, C.E. Schreck, and R.A. Yost, Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti), Anal. Chem. 72 (2000), pp. 747–756.
  • B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, and N.M. Ratcliffe, A review of the volatiles from the healthy human body, J. Breath Res. 8 (2014), p. 014001.
  • C.B.F. Vogels, J.J. Fros, G.P. Pijlman, J.J.A. van Loon, G. Gort, and C.J.M. Koenraadt, Virus interferes with host-seeking behaviour of mosquito, J. Exp. Biol. 220 (2017), pp. 3598–3603.
  • A. Robinson, A.O. Busula, M.A. Voets, K.B. Beshir, J.C. Caulfield, S.J. Powers, N.O. Verhulst, P. Winskill, J. Muwanguzi, M.A. Birkett, R.C. Smallegange, D.K. Masiga, W.R. Mukabana, R.W. Sauerwein, C.J. Sutherland, T. Bousema, J.A. Pickett, W. Takken, J.G. Logan, and J.G. de Boer, Plasmodium-associated changes in human odor attract mosquitoes, Proc. Natl. Acad. Sci. USA 115 (2018), pp. E4209–E4218.
  • J. Lee, D.B. Choi, F. Liu, J.P. Grieco, and N.L. Achee, Effect of the topical repellent para-menthane-3,8-diol on blood feeding behavior and fecundity of the dengue virus vector Aedes aegypti, Insects 9 (2018), p. 60.
  • A. Afify, B. Horlacher, J. Roller, and C.G. Galizia, Different repellents for Aedes aegypti against blood-feeding and oviposition, PLoS ONE 9 (2014), p. e103765.
  • Y.S. Hwang, W.L. Kramer, and M.S. Mulla, Oviposition attractants and repellents of mosquitoes, J. Chem. Ecol. 6 (1980), pp 71–80.
  • Y.S. Hwang, G.W. Schultz, H. Axelrod, W.L. Kramer, and M.S. Mulla, Ovipositional repellency of fatty acids and their derivatives against Culex and Aedes mosquitoes, Environ. Entomol. 11 (1982), pp. 223–226.
  • S.N. Tikar, R. Yadav, M.J. Mendki, A.N. Rao, D. Sukumaran, and B.D. Parashar, Oviposition deterrent activity of three mosquito repellents diethyl phenyl acetamide (DEPA), diethyl m toluamide (DEET), and diethyl benzamide (DEB) on Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus, Parasitol. Res. 113 (2014), pp. 101–106.
  • M.A. Navarro-Silva, F.A. Marques, and J.E. Duque Luna, Review of semiochemicals that mediate the oviposition of mosquitoes: A possible sustainable tool for the control and monitoring of Culicidae, Rev. Brasil. Entomol. 53 (2009), pp. 1–6.
  • A. Afify and C.G. Galizia, Chemosensory cues for mosquito oviposition site selection, J. Med. Entomol. 52 (2015), pp. 120–130.
  • J.A. Downes, The swarming and mating flight of Diptera, Annu. Rev. Entomol. 14 (1969), pp. 271–298.
  • E.Y. Fawaz, S.A. Allan, U.R. Bernier, P.J. Obenauer, and J.W. Diclaro II., Swarming mechanisms in the yellow fever mosquito: Aggregation pheromones are involved in the mating behavior of Aedes aegypti, J. Vector Ecol. 39 (2014), pp. 347–354.
  • R.J. Pitts, R. Mozūraitis, A. Gauvin-Bialecki, and G. Lempérière, The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes, Acta Trop. 132 (2014), pp. S26–S34.
  • L. Vaníčková, A. Canale, and G. Benelli, Sexual chemoecology of mosquitoes (Diptera, Culicidae): Current knowledge and implications for vector control programs, Parasitol. Int. 66 (2017), pp. 190–195.
  • S.H. Said, J.P. Grieco, and N.L. Achee, Evaluation of contact irritant and spatial repellent behavioural responses of male Aedes aegypti to vector control compounds, J. Am. Mosq. Assoc. 25 (2009), pp. 436–441.
  • M. Kongmee, D. Nimmo, G. Labbe, C. Beech, J. Grieco, L. Alphey, and N. Achee, Irritant and repellent behavioural responses of Aedes aegypti male populations developed for RIDL disease control strategies, J. Med. Entomol. 47 (2010), pp. 1092–1098.
  • Z. Syed and W.S. Leal, Mosquitoes smell and avoid the insect repellent DEET, Proc. Natl. Acad. Sci. USA 105 (2008), pp. 13598–13603.
  • S.D. Costanzo, A.J. Watkinson, E.J. Murby, D.W. Kolpin, and M.W. Sandstrom, Is there a risk associated with the insect repellent DEET (N,N-diethyl-m-toluamide) commonly found in aquatic environments?, Sci. Tot. Environ. 384 (2007), pp. 214–220.
  • C.I. Abramson, T. Giray, T.A. Mixson, S.L. Nolf, H. Wells, A. Kence, and M. Kence Proboscis conditioning experiments with honeybees, Apis mellifera caucasica, with butyric acid and DEET mixture as conditioned and unconditioned stimuli, J. Insect Sci. 10 (2010), p. 122.
  • J.A. Weeks, P.D. Guiney, and A.I. Nikiforov, Assessment of the environmental fate and ecotoxicity of N,N-diethyl-m-toluamide (DEET), Integr. Environ. Assess. Manag. 8 (2012), pp. 120–134.
  • D. Aronson, J. Weeks, B. Meylan, P.D. Guiney, and P.H. Howard, Environmental release, environmental concentrations, and ecological risk of N,N-diethyl-m-toluamide (DEET), Integr. Environ. Assess. Manag. 8 (2012), pp. 135–166.
  • M. Nendza, U. Klaschka, and R. Berghahn, Suitable test substances for proof of concept regarding infochemical effects in surface waters, Environ. Sci. Eur. 25 (2013), p. 21.
  • D. Campos, C. Gravato, C. Quintaneiro, A.M.V.M. Soares, and J.L.T. Pestana, Responses of the aquatic midge Chironomus riparius to DEET exposure, Aquat. Toxicol. 172 (2016), pp. 80–85.
  • D. Campos, C. Gravato, C. Quintaneiro, O. Koba, T. Randak, A.M.V.M. Soares, and J.L.T. Pestana, Are insect repellents toxic to freshwater insects? A case study using caddisflies exposed to DEET, Chemosphere 149 (2016), pp. 177–182.
  • P. Fink and E. von Elert, No effect of insect repellents on the behaviour of Lymnaea stagnalis at environmentally relevant concentrations, Environ. Sci. Pollut. Res. 24 (2017), pp. 26120–26124.
  • P. Fink, J.Moelzner, R. Berghahn, and E. von Elert, Do insect repellents induce drift behaviour in aquatic non-target organisms?, Water Res. 108 (2017), pp. 32–38.
  • C. Carraher, J. Dalziel, M.D. Jordan, D.L. Christie, R.D. Newcomb, and A.V. Kralicek, Towards an understanding of the structural basis for insect olfaction by odorant receptors, Insect Biochem. Molec. Biol. 66 (2015), pp. 31–41.
  • P.L. Jones, G.M. Pask, D.C. Rinker, and L.J. Zwiebel, Functional agonism of insect odorant receptor ion channels, Proc. Natl. Acad. Sci. USA 108 (2011), pp. 8821–8825.
  • R.W. Taylor, I.M. Romaine, C. Liu, P. Murthi, P.L. Jones, A.G. Waterson, G.A. Sulikowski, and L.J. Zwiebel, Structure–activity relationship of a broad–spectrum insect odorant receptor agonist, ACS Chem. Biol. 7 (2012), pp. 1647–1652.
  • P.L. Jones, G.M. Pask, I.M. Romaine, R.W. Taylor, P.R. Reid, A.G. Waterson, G.A. Sulikowski, and L.J. Zwiebel, Allosteric antagonism of insect odorant receptor ion channels, PLoS ONE 7 (2012), p. e30304.
  • S. Chen and C.W. Luetje, Identification of new agonists and antagonists of the insect odorant receptor co-receptor subunit, PLoS ONE 7 (2012), p. e36784.
  • I.M. Romaine, R.W. Taylor, S.P. Saidu, K. Kim, G.A. Sulikowski, L.J. Zwiebel, and A.G. Waterson, Narrow SAR in odorant sensing Orco receptor agonists, Bioorg. Med. Chem. Lett. 24 (1014), pp. 2613–2616.
  • D. Kepchia, S. Moliver, K. Chohan, C. Phillips, and C.W. Luetje, Inhibition of insect olfactory behavior by an airborne antagonist of the insect odorant receptor co-receptor subunit, PLoS ONE 12 (2017), p. e0177454.
  • J. Devillers and M.H. Pham-Delègue, Honey Bees: Estimating the Environmental Impact of Chemicals, Taylor & Francis, London, 2002.
  • M.N. Andersson and R.D. Newcomb, Pest control compounds targeting insect chemoreceptors: Another silent spring?, Front. Ecol. Evol. (2017), doi:10.3389/fevo.2017.00005.
  • G.J. Devine, E.Z. Perea, G.F. Killeen, J.D. Stancil, S.J. Clark, and A.C. Morrison, Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats, Proc. Natl. Acad. Sci. USA 106 (2009), pp. 11530–11534.
  • J. Devillers, H. Devillers, A. Decourtye, J. Fourrier, P. Aupinel, and D. Fortini, Agent-based modeling of the long term effects of pyriproxyfen on honey bee population, in In Silico Bees, J. Devillers, ed., CRC Press, Boca Raton, FL, 2014, pp. 179–208.
  • WHO, Guidelines for Efficacy Testing of Mosquito Repellents for Human Skin, WHO/HTM/NTD/WHOPES/2009.4, World Health Organization, Geneva, Switzerland, 2009.
  • D.R. Barnard, Biological assay methods for mosquito repellents, J. Am. Mosq. Control Assoc. 21 (2005), pp. 12–16.
  • W. Deng, N. Zhu, and J. Mo, In vitro bioassay methods for laboratory screening of novel mosquito repellents, Entomol. Sci. 17 (2014), pp. 365–370.
  • USDA, Chemicals Evaluated as Insecticides and Repellents at Orlando, Fla, compiled by King WV, Agriculture Handbook No 69, USDA, Washington, DC, 1954.
  • USDA, Materials Evaluated as Insecticides, Repellents, and Chemosterilants at Orlando and Gainesville, Fla., 1952–1964, Agriculture Handbook No 340, USDA, Washington, DC., 1967.
  • USDA, Repellent Activity of Compounds Submitted by Walter Reed Army Institute of Research. I. Protection Time and Minimum Effective Dosage Against Aedes aegypti Mosquitoes, Technical Bulletin No. 1549, USDA, Washington, DC, 1977.
  • K. Mansouri, C.M. Grulke, A.M. Richard, R.S. Judson, and A.J. Williams, An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling, SAR QSAR Environ. Res. 27 (2016), pp. 911–937.
  • M. DeGennaro, The mysterious multi-modal repellency of DEET, Fly 9 (2015), pp. 45–51.
  • E.J. Dennis and L.B. Vossha, DEET feet: Aedes aegypti mosquitoes use their tarsi to sense DEET on contact, bioRxiv (2018), http://dx.doi.org/10.1101/360222.
  • M. Tavares, M.R.M. da Silva, L.B. de Oliveira de Siqueira, R.A.S. Rodrigues, L. Bodjolle-d’Almeida, E.P. Dos Santos, and E. Ricci-Júnior, Trends in insect repellent formulations: A review, Int. J. Pharm. 539 (2018), pp. 190–209.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.