169
Views
4
CrossRef citations to date
0
Altmetric
Articles

Application of molecular docking and PSO–SVR intelligent approaches in antimalarial activity prediction of enantiomeric cycloguanil analogues

, &
Pages 957-974 | Received 13 Jul 2018, Accepted 12 Oct 2018, Published online: 01 Nov 2018

References

  • World Health Organization (2018), World Malaria Day, 25 April 2018; Available at http://www.who.int/campaigns/malaria-day/2018/event/en/.
  • D.A. Warrell, T.M. Cox, and J.D. Firth, The Oxford Textbook of Medicine, 5th ed., Oxford University Press, Oxford, 2010.
  • A. Nzila, The past, present and future of antifolates in the treatment of Plasmodium falciparum infection, J. Antimicrob. Chemother. 57 (2006), pp. 1043–1054.
  • A. Gregson and C.V. Plowe, Mechanisms of resistance of malaria parasites to antifolates, Pharmacol. Rev. 57 (2005), pp. 117–145.
  • S. Kamchonwongpaisan, R. Quarrell, N. Charoensetakul, R. Ponsinet, T. Vilaivan, J. Vanichtanankul, B. Tarnchompoo, W. Sirawaraporn, G. Lowe, and Y. Yuthavong, Inhibitors of multiple mutants of Plasmodium falciparum dihydrofolate reductase and their antimalarial activities, J. Med. Chem. 47 (2004), pp. 673–680.
  • Y. Yuthavong, B. Tarnchompoo, T. Vilaivan, P. Chitnumsub, S. Kamchonwongpaisan, S.A. Charman, D.N. McLennan, K.L. White, L. Vivas, E. Bongard, C. Thongphanchang, S. Taweechai, J. Vanichtanankul, R. Rattanajak, U. Arwon, P. Fantauzzi, J. Yuvaniyama, W.N. Charman, and D. Matthews, Malarial dihydrofolate reductase as a paradigm for drug development against a resistance-compromised target, Proc. Natl. Acad. Sci. U.S.A. 109 (2012), pp. 16823–16828.
  • Y. Yuthavong, T. Vilaivan, N. Chareonsethakul, S. Kamchonwongpaisan, W. Sirawaraporn, R. Quarrell, and G. Lowe, Development of a lead inhibitor for the A16V+S108T mutant of dihydrofolate reductase from the cycloguanil-resistant strain (T9/94) of Plasmodium falciparum, J. Med. Chem. 43 (2000), pp. 2738–2744.
  • D.R. Brocks and R. Mehvar, Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs, Clin. Pharmacokinet. 42 (2003), pp. 1359–1382.
  • M.A. Biamonte, J. Wanner, and K.G. Le Roch, Recent advances in malaria drug discovery, Bioorg. Med. Chem. Lett. 23 (2013), pp. 2829–2843.
  • M. Schmidt, H. Sun, P. Rogne, G.K.E. Scriba, C. Griesinger, L.T. Kuhn, and U.M. Reinscheid, Determining the absolute configuration of (+)-Mefloquine HCl, the side-effect-reducing enantiomer of the antimalaria drug Lariam, J. Am. Chem. Soc. 134 (2012), pp. 3080–3083.
  • F. Felluga, M. Fermeglia, M. Ferrone, G. Pitacco, S. Pricl, and E. Valentin, Computational studies on the enantioselectivity of α-chymotrypsin towards β-carbomethoxy-γ-lactams, Tetrahedral: Asymmetry 13 (2002), pp. 475–489.
  • C. Fernanses, M.E. Tiritan, Q. Cass, V. Kairys, M.X. Fernandes, and M. Pinto, Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases, J. Chromatogr. A 1241 (2012), pp. 60–68.
  • A.M. Sørensen, C.H. Hansen, S. Bonomo, L. Olsen, F.S. Jørgensen, J.J. Weisser, A.C. Kretschmann, and B. Styrishave, Enantioselective endocrine disrupting effects of omeprazole studied in the H295R cell assay and by molecular modeling, Toxicol. In Vitro. 34 (2016), pp. 71–80.
  • W. Xu, J. Huang, R. Jiang, and M. Yuan, Crystal structures, absolute configurations and molecular docking studies of naftopidil enantiomers as α1D-adrenoceptor antagonists, Acta Pharm. Sin. B. 7 (2017), pp. 496–501.
  • A. Lavecchia, S. Cosconati, E. Novellino, E. Calleri, C. Temporini, G. Massolini, G. Carbonara, G. Fracchiolla, and F. Loiodice, Exploring the molecular basis of the enantioselective binding of penicillin G acylase towards a series of 2-aryloxyalkanoic acids: A docking and molecular dynamics study, J. Mol. Graph. Model. 25 (2007), pp. 773–783.
  • S. Kulatee, P. Toochinda, A. Suksangpanomrung, and L. Lawtrakul, Theoretical investigation of the enantioselective complexations between PfDHFR and cycloguanilloguanil derivatives, Sci. Pharm. 85 (2017). Available at http://www.mdpi.com/2218-0532/85/4/37.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman, and D. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2016.
  • Y. Zhao and D.G. Truhlar, The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals, Theor. Chem. Account. 120 (2008), pp. 215–241.
  • Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 Sherbooke St. West, Suite #910, Montreal, QC, Canada, H3A 2R7, 2018.
  • D.E. Hinkle, W. Wiersma, and S.G. Jurs, Applied Statistics for Behavioral Sciences, 5th ed., Cengage Learning US, 2003.
  • J. Vanichtanankul, S. Taweechai, C. Uttamapinant, P. Chitnumsub, T. Vilaivan, Y. Yuthavong, and S. Kamchonwongpaisan, Combined spatial limitation around residues 16 and 108 of Plasmodium falciparum dihydrofolate reductase explains resistance to cycloguanil, Antimicrob. Agents Chemother. 56 (2012), pp. 3928–3935.
  • H.M. Berman, K. Henrick, and H. Nakamura, Announcing the worldwide Protein Data Bank, Nat. Struct. Biol. 10 (2003), p. 980.
  • Accelrys. Discovery Studio Modeling Environment Release 4.0; Accelrys Inc.: San Diego, CA, USA, 2016.
  • G.M. Morris, R. Huey, W. Lindstrom, M.F. Sanner, R.K. Belew, D.S. Goodsell, and A.J. Olson, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem. 85 (2017), pp. 2785–2791.
  • G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, and A.J. Olson, Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, J. Comp. Chem. 19 (1998), pp. 1639–1662.
  • C.E. Russell and S. Yuhui, Particle swarm optimization: Developments, applications and resources, Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, (2001), pp. 81–86. Available at https://ieeexplore.ieee.org/document/934374.
  • S.K. Tchomte and M. Gourgand, Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems, Int. J. Prod. Econ. 121 (2009), pp. 57–67.
  • D.K. Agrafiotis and W. Cedeño, Feature selection for structure–activity correlation using binary particle swarms, J. Med. Chem. 45 (2002), pp. 1098–1107.
  • L. Lawtrakul and C. Prakasvudhisarn, Correlation studies of HEPT derivatives using swarm intelligence and support vector machines, Monatsh. Chem. 136 (2005), pp. 1681–1691.
  • M. Goodarzi, W. Saeys, O. Deeb, S. Pieters, and H.Y. Vander, Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo[1,5-a]pyrido[3,2-e]pyrazines, inhibitors of phosphodiesterase 10A, Chem. Biol. Drug. Des. 82 (2013), pp. 685–696.
  • Y. Wang, J.J. Huang, N. Zhou, D.S. Cao, J. Dong, and H.X. Li, Incorporating PLS model information into particle swarm optimization for descriptor selection in QSAR/QSPR, J. Chemom. 29 (2015), pp. 627–636.
  • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20 (1995), pp. 273–297.
  • A.J. Smola and B. Schölkopf, A tutorial on support vector regression, Stat. Comput. 14 (2004), pp. 199–222.
  • B. Stephen and V. Lieven, Convex Optimization. Cambridge University Press, Cambridge, 2004.
  • R. Darnag, B. Minaoui, and M. Fakir, QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression. Arabian J. Chem. 10 (2017), pp. S600–S608.
  • R. Leach and V.J. Gillet, An introduction to chemoinformatics, J. Am. Chem. Soc. 126 (2004), pp. 7729–7730.
  • G. Schneider and P. Wrede, Artificial neural networks for computer-based molecular design, Prog. Biophys. Mol. Bio. 70 (1998), pp. 175–222.
  • R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C.P. Varghese, and R.K. Agrawal, Validation of QSAR models – strategies and importance, Int. J. Drug Des. Discov. 2 (2011), pp. 511–519.
  • Y. Yuthavong. Basis for antifolate action and resistance in malaria, Microbes. Infect. 4 (2002), pp. 175–182.
  • L. Adane and P.V. Bharatam, 3D-QSAR analysis of cycloguanil derivatives as inhibitors of A16V + S108T mutant Plasmodium falciparum dihydrofolate reductase enzyme, J. Mol. Graph. Model. 28 (2009), pp. 357–367.
  • J. Gasteiger and M. Marsili, Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges, Tetrahedron 36 (1980), pp. 3219–3228.
  • P. Labute, A widely applicable set of descriptors. J. Mol. Graph. Model. 18 (2000), pp. 464–477.
  • R.S. Pearlman and K.M. Smith, Novel software tools for chemical diversity, Perspect. Drug Discov. Des. 9 (1998), pp. 339–353.
  • S. Basak and D. Mills, Quantitative structure-activity relationships for cycloguanil analogs as PfDHFR inhibitors using mathematical molecular descriptors. SAR QSAR Environ. Res. 21 (2010), pp. 215–229.
  • D. Hecht, M. Cheung, and G.B. Fogel, Docking scores and QSAR using evolved neural networks for the Pan-inhibition of wild-type and mutant PfDHFR by cycloguanil derivatives, IEEE Congress on Evolutionary Computation, (2009), pp. 262–269. Available at https://ieeexplore.ieee.org/document/4982957.
  • P. Maitarad, S. Kamchonwongpaisan, J. Vanichtanankul, T. Vilaivan, Y. Yuthavong, and S. Hannongbua, Interactions between cycloguanil derivatives and wild type and resistance-associated mutant Plasmodium falciparum dihydrofolate reductases, J. Comput. Aided Mol. Des. 23 (2009), pp. 241–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.