92
Views
5
CrossRef citations to date
0
Altmetric
Articles

An exploratory study using QICAR models for prediction of adsorption capacity of multi-walled carbon nanotubes for heavy metal ions

&
Pages 997-1009 | Received 26 Aug 2018, Published online: 09 Nov 2018

References

  • P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, and D.J. Sutton, Heavy Metals Toxicity and the Environment, Vol, 101, Springer, Basel, 2012.
  • L. Charerntanyarak, Heavy metals removal by chemical coagulation and precipitation, Water Sci. Technol. 39 (1999), pp. 135–138.
  • M. Barakat and E. Schmidt, Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater, Desalination 256 (2010), pp. 90–93.
  • T.A. Kurniawan, G.Y. Chan, W.-H. Lo, and S. Babel, Physico–chemical treatment techniques for wastewater laden with heavy metals, Chem. Eng. J. 118 (2006), pp. 83–98.
  • M.K. Uddin, A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade, Chem. Eng. J. 308 (2017), pp. 438–462.
  • H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC Journal 9 (2013), pp. 276–282.
  • A.P. Lim and A.Z. Aris, A review on economically adsorbents on heavy metals removal in water and wastewater, Rev. Environ. Sci. Bio. 13 (2014), pp. 163–181.
  • B. Samiey, C.H. Cheng, and J. Wu, Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A review, Materials 7 (2014), pp. 673–726.
  • A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, and V.K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxicol. Environ. Saf. 148 (2018), pp. 702–712.
  • X. Ren, C. Chen, M. Nagatsu, and X. Wang, Carbon nanotubes as adsorbents in environmental pollution management: A review, Chem. Eng. J. 170 (2011), pp. 395–410.
  • H. Sadegh, R. Shahryari Ghoshekandi, A. Masjedi, Z. Mahmoodi, and M. Kazemi, A review on carbon nanotubes adsorbents for the removal of pollutants from aqueous solutions, Int. J. Nano Dimens. 7 (2016), pp. 109–120.
  • M.A. Salam, Removal of heavy metal ions from aqueous solutions with multi-walled carbon nanotubes: Kinetic and thermodynamic studies, Int. J. Environ. Sci. Technol. 10 (2013), pp. 677–688.
  • G.P. Rao, C. Lu, and F. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review, Sep. Purif. Technol. 58 (2007), pp. 224–231.
  • A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, and M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: Critical review of adsorption applications, Sep. Purif. Technol. 157 (2016), pp. 141–161.
  • K. Roy, Advances in QSAR Modeling: Pharmaceutical, Chemical Applications in, Food, Agricultural and Environmental Sciences, Vol. 24, Springer, Switzerland, 2017.
  • K.P. Singh and S. Gupta, Nano-QSAR modeling for predicting biological activity of diverse nanomaterials, RSC Adv. 4 (2014), pp. 13215–13230.
  • J.D. Walker, M.C. Newman, and M. Enache, Fundamental QSARs for Metal Ions, CRC Press, Boca Raton, 2012.
  • T. Puzyn, A. Mostrag-Szlichtyng, A. Gajewicz, M. Skrzyński, and A.P. Worth, Investigating the influence of data splitting on the predictive ability of QSAR/QSPR models, Struct. Chem. 22 (2011), pp. 795–804.
  • C. Ekberg and P.L. Brown, Hydrolysis of Metal Ions, Wiley Online Library, Germany, 2016.
  • W.M. Haynes, CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 2014.
  • Database on properties of chemical elements, 2017. Available at http://phases.imet-db.ru/elements/main.aspx.
  • RSC Periodic Table, 2017. Available at http://www.rsc.org/periodic-table.
  • E. Nieboer and W. McBryde, Free-energy relationships in coordination chemistry. III. A comprehensive index to complex stability, Can. J. Chem. 51 (1973), pp. 2512–2524.
  • J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, Mexico, 1992.
  • N. Sukumar, G. Prabhu, and P. Saha, Applications of genetic algorithms in QSAR/QSPR modeling, in Applications of Metaheuristics in Process Engineering, eds., J. Valadi, P. Siarry, Springer, Switzerland, 2014, pp. 315–324.
  • R. Leardi, Application of genetic algorithm–PLS for feature selection in spectral data sets, J. Chemom. 14 (2000), pp. 643–655.
  • P.R. Duchowicz, E.A. Castro, and F.M. Fernández, Alternative algorithm for the search of an optimal set of descriptors in QSAR-QSPR studies, MATCH Commun. Math. Comput. Chem 55 (2006), pp. 179–192.
  • P.R. Duchowicz, M. Fernández, J. Caballero, E.A. Castro and F.M. Fernández, QSAR for non-nucleoside inhibitors of HIV-1 reverse transcriptase, Biorg. Med. Chem. 14 (2006), pp. 5876–5889.
  • A.G. Mercader, P.R. Duchowicz, F.M. Fernández, and E.A. Castro, Modified and enhanced replacement method for the selection of molecular descriptors in QSAR and QSPR theories, Chemom. Intell. Lab. Syst. 92 (2008), pp. 138–144.
  • A.G. Mercader, P.R. Duchowicz, F.M. Fernández, and E.A. Castro, Advances in the replacement and enhanced replacement method in QSAR and QSPR theories, J. Chem. Inform. Model. 51 (2011), pp. 1575–1581.
  • M.C.U. Araújo, T.C.B. Saldanha, R.K.H. Galvão, T. Yoneyama, H.C. Chame, and V. Visani, The successive projections algorithm for variable selection in spectroscopic multicomponent analysis, Chemom. Intell. Lab. Syst. 57 (2001), pp. 65–73.
  • T. Fearn, On orthogonal signal correction, Chemom. Intell. Lab. Syst. 50 (2000), pp. 47–52.
  • S. Wold, H. Antti, F. Lindgren, and J. Öhman, Orthogonal signal correction of near-infrared spectra, Chemom. Intell. Lab. Syst. 44 (1998), pp. 175–185.
  • R. Laref, D. Ahmadou, E. Losson, and M. Siadat, Orthogonal signal correction to improve stability regression model in gas sensor systems, J. Sens. (2017), pp. 1–8.
  • A.Y. Heidari, Yoctosecond quantitative structure–activity relationship (QSAR) and quantitative structure–property relationship (QSPR) under synchrotron radiations studies for prediction of solubility of anti–cancer nano drugs in aqueous solutions using genetic function approximation (GFA) algorithm, J. Pharm. Pharm. Res. 1 (2017), p. 6.
  • M. Boháč, B. Loeprecht, J. Damborský, and G. Schüürmann, Impact of orthogonal signal correction (OSC) on the predictive ability of CoMFA models for the ciliate toxicity of nitrobenzenes, Quant. Struct.‐Act. Rel. 21 (2002), pp. 3–11.
  • C. Rücker, G. Rücker, and M. Meringer, y-Randomization and its variants in QSPR/QSAR, J. Chem. Inform. Model. 47 (2007), pp. 2345–2357.
  • A. Golbraikh and A. Tropsha, Beware of q 2!, J. Mol. Graphics Modell. 20 (2002), pp. 269–276.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring r m 2 metrics for validation of QSPR models, Chemom. Intell. Lab. Syst. 107 (2011), pp. 194–205.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp.18–33.
  • N. Chirico and P. Gramatica, Real external predictivity of QSAR models: How to evaluate it? Comparison of different validation criteria and proposal of using the concordance correlation coefficient, J. Chem. Inform. Model. 51 (2011), pp. 2320–2335.
  • T.I. Netzeva, A. Worth, T. Aldenberg, R. Benigni, M.T. Cronin, P. Gramatica, J.S. Jaworska, S. Kahn, G. Klopman, C.A. Marchant, G. Myatt, N. Nikolova-Jeliazkova, G.Y. Patlewicz, R. Perkins, D. Roberts, T. Schultz, D.W. Stanton, J.J. van de Sandt, W. Tong, G. Veith, and C. Yang, Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships, ATLA 33 (2005), pp. 155–173.
  • A.G. Mercader, P.R. Duchowicz, F.M. Fernández, and E.A. Castro, Replacement method and enhanced replacement method versus the genetic algorithm approach for the selection of molecular descriptors in QSPR/QSAR theories, J. Chem. Inform. Model. 50 (2010), pp. 1542–1548.
  • P. Ambure and K. Roy, Understanding the structural requirements of cyclic sulfone hydroxyethylamines as hBACE1 inhibitors against Aβ plaques in Alzheimer’s disease: A predictive QSAR approach, RSC Adv. 6 (2016), pp. 28171–28186.
  • D.L.J. Alexander, A. Tropsha, and D.A. Winkler, Beware of R(2): Simple, unambiguous assessment of the prediction accuracy of QSAR and QSPR models, J. Chem. Inform. Model. 55 (2015), pp. 1316–1322.
  • M. Farrés, S. Platikanov, S. Tsakovski, and R. Tauler, Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation, J. Chemom. 29 (2015), pp. 528–536.
  • E. Clementi, D. Raimondi, and W. Reinhardt, Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons, J. Chem. Phys. 47 (1967), pp. 1300–1307.
  • S.S. Zamil, S. Ahmad, M.H. Choi, J.Y. Park, and S.C. Yoon, Correlating metal ionic characteristics with biosorption capacity of Staphylococcus saprophyticus BMSZ711 using QICAR model, Bioresour. Technol. 100 (2009), pp. 1895–1902.
  • C.P. Tatara, M.C. Newman, J.T. McCloskey, and P.L. Williams, Use of ion characteristics to predict relative toxicity of mono-, di-and trivalent metal ions: Caenorhabditis elegans LC50, Aquat. Toxicol. 42 (1998), pp. 255–269.
  • C. Chen and J. Wang, Influence of metal ionic characteristics on their biosorption capacity by Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 74 (2007), pp. 911–917.
  • Q. Meng, J. Richmond-Bryant, S. Lu, B. Buckley, W.J. Welsh, E.A. Whitsel, A. Hanna, K.B. Yeatts, J. Warren, A.H. Herring, and A. Xiu, Cardiovascular outcomes and the physical and chemical properties of metal ions found in particulate matter air pollution: A QICAR study, Environ. Health Perspect. 121 (2013), pp. 558.
  • C. Yoo and M. Shahlaei, The applications of PCA in QSAR studies: A case study on CCR5 antagonists, Chem. Biol. Drug Des. 91 (2018), pp. 137–152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.