264
Views
5
CrossRef citations to date
0
Altmetric
Articles

DFT-based theoretical prediction of intrinsic viscosity of polymer solutions

ORCID Icon &
Pages 1011-1021 | Received 09 Sep 2018, Published online: 09 Nov 2018

References

  • D.W. Van Krevelen, Properties of Polymers, 3rd ed., Elsevier, Amsterdam, 1990.
  • J. Bicerano, Prediction of Polymer Properties, 3rd ed., Marcel Dekker, New York, 2002.
  • F. Gharagheizi, QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN, Comput. Mater. Sci. 40 (2007), pp. 159–167.
  • Y. Lu, L. An, and Z.-G. Wang, Intrinsic viscosity of polymers: General theory based on a partially permeable sphere model, Macromolecules 46 (2013), pp. 5731−5740.
  • D. Yan, Intrinsic viscosity of polymer solutions: Fresh ideas to an old problem, Sci. China Chem. 58 (2015), pp. 835–838.
  • X. Yu, B. Yi, Z. Xie, X. Wang, and F. Liu, Prediction of the conformational property for polymers using quantum chemical descriptors, Chemom. Intell. Lab. Syst. 87 (2007), pp. 247–251.
  • X. Yu, X. Wang, H. Wang, X. Li, and J. Gao, Prediction of solubility parameters for polymers by a QSPR Model, QSAR Comb. Sci. 25 (2006), pp. 156–161.
  • A. Afantitis, G. Melagraki, H. Sarimveis, P.A. Koutentis, J. Markopoulos, and O. Igglessi-Markopoulou, Prediction of intrinsic viscosity in polymer–solvent combinations using a QSPR model, Polymer 47 (2006), pp. 3240–3248.
  • Y. Wang, F. Wu, Y. Liu, Y. Mu, J.P. Giesy, W. Meng, Q. Hu, J. Liu, and Z. Dang, Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids, Environ. Pollut. 232 (2018), pp. 458–466.
  • E.C. Rath, H. Gill, and Y. Bai, Identification of potential antimicrobials against Salmonella typhimurium and Listeria monocytogenes using quantitative structure-activity relation modeling, PLoS ONE 12 (2017), e018958.
  • Y. Guo, K.D. Jong, F. Liu, X. Wang, and C. Li, A Comparison of artificial neural networks and support vector machines on land cover classification, Commun. Comput. Inform. Sci. 316 (2012), pp. 531–539.
  • Q. Wu, B. Yan, C. Zhang, L. Wang, G. Ning, and B. Yu, Displacement prediction of tunnel surrounding rock: A comparison of support vector machine and artificial neural network, Math. Prob. Eng. 2014 (2014), pp. 1–6.
  • S.M.H. Ismael, QSPR model of intrinsic viscosity for poly(isobutylene), J. Comput. Meth. Mol. Des. 2 (2012), pp. 130–135.
  • M.H. Ismael, K.A. Hussain, and A.D. Matter, QSPR study of the intrinsic viscosity [η] of polyisobutylene solution, Chem. Sci. Trans. 4. (2015), pp. 355–360.
  • X. Yu, Prediction of Q-e parameters of monomers in free-radical copolymerizations, Acta Chim. Sinica 68 (2010), pp. 2264–2272.
  • W.A. Radhi, S.M.H. Ismael, and K.A. Hussain, Study of the intrinsic viscosity[η] of poly(methyl methacrylate) solution by QSPR, Chem. Sci. Trans. 6 (2017), pp. 129–134.
  • I.O. Alisi, A. Uzairu, S.E. Abechi, and S.O. Idris, Quantitative structure activity relationship analysis of coumarins as free radical scavengers by genetic function algorithm, Phys. Chem. Res. 6 (2018), pp. 209–233.
  • J. Matysiak, A. Skrzypek, P. Tarasiuk, and M. Mojzych, QSAR study of pyrazolo[4,3-e][1,2,4]triazine sulfonamides against tumor-associated human carbonic anhydrase isoforms IX and XII, Comput. Bio. Chem. 71 (2017), pp. 57–62.
  • A. Gooch, N. Sizochenko, L. Sviatenko, L. Gorb, and J. Leszczynski, A quantum chemical based toxicity study of estimated reduction potential and hydrophobicity in series of nitroaromatic compounds, SAR QSAR Environ. Res. 28 (2017), pp. 133–150.
  • S. Luo, Z. Wei, R. Spinney, Z. Yang, L. Chai, and R. Xiao, A novel model to predict gas–phase hydroxyl radical oxidation kinetics of polychlorinated compounds, Chemosphere 172 (2017), pp. 333–340.
  • X. Yu and R. Yu, Setschenow constant prediction based on the IEF-PCM calculations, Ind. Eng. Chem. Res. 52 (2013), pp. 11182−11188.
  • M. Karelson, V.S. Lobanov, and A.R. Katritzky, Quantum-chemical descriptors in QSAR/QSPR studies, Chem. Rev. 96 (1996), pp. 1027–1043.
  • J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Men-nucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, Peng, W. Chen, M.W. Wong, J.L. Andres, M. Head-Gordon, E.S. Replogle, and J.A. Pople. Gaussian 03, Revision B.05. Gaussian Inc., Pittsburgh, PA, 2003.
  • M. Daszykowski, S. Serneels, K. Kaczmarek, P.V. Espen, C. Croux, and B. Walczak, TOMCAT: A MATLAB toolbox for multivariate calibration techniques, Chemom. Intell. Lab. Syst. 85(2007), pp. 269–277.
  • P. Ghaemian and A. Shayanfar, Quantitative structure activity relationship (QSAR) of methylated polyphenol derivatives as permeability glycoprotein (P-gp) inhibitors: A comparison of different training and test set selection methods, Lett. Drug. Des. Discov. 14 (2017), pp. 999–1007.
  • X. Yu, R. Yu, L. Tang, Q. Guo, Y. Zhang, Y. Zhou, Q. Yang, X. He, X. Yang, and K. Wang, Recognition of candidate aptamer sequences for human hepatocellular carcinoma in SELEX screening using structure–activity relationships, Chemom. Intell. Lab. Syst. 136 (2014), pp. 10–14.
  • C.C. Chang and C.J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), pp. 27.
  • G. Eng, Review: Quantitative structure–activity/property relationships as related to organotin chemistry, Appl. Organomet. Chem. 31 (2017), p. e3712.
  • K.S. Varaksin, H. Szatylowicz, and T.M. Krygowski, Towards a physical interpretation of substituent effect: Quantum chemical interpretation of Hammett substituent constants, J. Mol. Struct. 1137 (2017), pp. 581–588.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.