389
Views
22
CrossRef citations to date
0
Altmetric
Articles

Development of classification models for predicting chronic toxicity of chemicals to Daphnia magna and Pseudokirchneriella subcapitata

, , , , &
Pages 39-50 | Received 27 Aug 2018, Published online: 27 Nov 2018

References

  • R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C.A. Johnson, U. von Gunten, and B. Wehrli, The challenge of micropollutants in aquatic systems, Science 313 (2006), pp. 1072–1077.
  • S.M. Rappaport and M.T. Smith, Epidemiology. Environment and disease risks, Science 330 (2010), pp. 460–461.
  • A. Prüss-Ustün, C. Vickers, P. Haefliger, and R. Bertollini, Knowns and unknowns on burden of disease due to chemicals: A systematic review, Environ. Health 10 (2011), p. 9.
  • Council of the European Union, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, 2006.
  • U.S. Congress, Frank R. Lautenberg Chemical Safety for the 21st Century Act, Public Law No. 114–182, 2016.
  • European Commission, Technical Guidance Document on Risk Assessment Part II Chapter 3 Environmental Risk Assessment, Ispra: European Commission, 2003
  • C.J. van Leeuwen‎ and T.G. Vermeire, Risk Assessment of Chemicals: An Introduction 2nd edition, Springer, Dordrecht, 2007.
  • M.L. Card, V. Gomez-Alvarez, W.H. Lee, D.G. Lynch, N.S. Orentas, M.T. Lee, E.M. Wong, and R.S. Boethling, History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments, Environ. Sci. Process. Impacts 19 (2017), pp. 203–212.
  • F.S. Collins, G.M. Gray, and J.R. Bucher, Toxicology. Transforming environmental health protection, Science 319 (2008), pp. 906–907.
  • T. Hartung, Toxicology for the twenty-first century, Nature 460 (2009), pp. 208–212.
  • R. Kavlock and D. Dix, Computational toxicology as implemented by the U.S. EPA: Providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk, J. Toxicol. Environ. Health B. Crit. Rev. 13 (2010), pp. 197–217.
  • G Schüürmann, R.U. Ebert, and R. Kühne, Quantitative read-across for predicting the acute fish toxicity of organic compounds, Environ. Sci. Technol. 45 (2011), pp. 4616–4622.
  • S. Cassani, S. Kovarich, E. Papa, P.P. Roy, L. van der Wal, and P. Gramatica, Daphnia and fish toxicity of (benzo)triazoles: Validated QSAR models, and interspecies quantitative activity–activity modelling, J. Hazard. Mater. 258–259 (2013), pp. 50–60.
  • R. Kühne, R.U. Ebert, P.C. von der Ohe, N. Ulrich, W. Brack, and G. Schüürmann, Read-across prediction of the acute toxicity of organic compounds toward the water flea Daphnia magna, Mol. Inform. 32 (2013), pp. 108–120.
  • F.S. Lyakurwa, X.H. Yang, X.H. Li, X.L. Qiao, and J.W. Chen, Development and validation of theoretical linear solvation energy relationship models for toxicity prediction to fathead minnow (Pimephales promelas), Chemosphere 96 (2014), pp. 188–194.
  • J. Villain, S. Lozano, M.P. Halm-Lemeille, G. Durrieu, and R. Bureau, Quantile regression model for a diverse set of chemicals: Application to acute toxicity for green algae, J. Mol. Model. 20 (2014), p. 2508.
  • H. Liu, P. Sun, H.X. Liu, S.G. Yang, L.S. Wang, and Z.Y. Wang, Acute toxicity of benzophenone-type UV filters for Photobacterium phosphoreum and Daphnia magna: QSAR analysis, interspecies relationship and integrated assessment, Chemosphere 135 (2015), pp. 182–188.
  • R. Aalizadeh, P.C. von der Ohe, and N.S. Thomaidis, Prediction of acute toxicity of emerging contaminants on the water flea Daphnia magna by ant colony optimization-support vector machine QSTR models. Environ. Sci. Process. Impacts 19 (2017), pp. 438–448.
  • S. Önlü and M.T. Saçan, An in silico algal toxicity model with a wide applicability potential for industrial chemicals and pharmaceuticals, Environ. Toxicol. Chem. 36 (2017), pp. 1012–1019.
  • S. Bakire, X.Y. Yang, G.C. Ma, X.X. Wei, H.Y. Yu, J.R. Chen, and H.J. Lin, Developing predictive models for toxicity of organic chemicals to green algae based on mode of action, Chemosphere 190 (2018), pp. 463–470.
  • J.J. Li, X.J. Zhang, Y. Yang, T. Huang, C. Li, L. Su, Y.H. Zhao, and M.T.D. Cronin, Development of thresholds of excess toxicity for environmental species and their application to identification of modes of acute toxic action, Sci. Total. Environ. 616-617 (2018), pp. 491–499.
  • L. Claeys, F. Iaccino, C.R. Janssen, P. Van Sprang, and F. Verdonck, Development and validation of a quantitative structure-activity relationship for chronic narcosis to fish, Environ. Toxicol. Chem. 32 (2013), pp. 2217–2225.
  • T.J. Austin and C.V. Eadsforth, Development of a chronic fish toxicity model for predicting sub-lethal NOEC values for non-polar narcotics, SAR QSAR Environ. Res. 25 (2014), pp. 147–160.
  • D. Fan, J.N. Liu, L. Wang, X.H. Yang, S.H. Zhang, Y. Zhang, and L.L. Shi, Development of quantitative structure-activity relationship models for predicting chronic toxicity of substituted benzenes to Daphnia magna, Bull. Environ. Contam. Toxicol. 96 (2016), pp. 664–670.
  • M.T. Cronin, (Q)SARs to predict environmental toxicities: Current status and future needs, Environ. Sci. Process. Impacts 19 (2017), pp. 213–220.
  • OECD, Guidance Document On The Validation Of (Quantitative) Structure-Activity Relationship [(Q)SAR] Models. OECD Environment Health and Safety Publications Series on Testing and Assessment No. 69, Paris: OECD, 2007.
  • United Nations, Globally Harmonized System of Classification and Labelling of Chemicals (GHS), Seventh revised edition GHS (Rev.7), New York and Geneva: United Nations, 2017.
  • MOPAC, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, USA, http://OpenMOPAC.net, 2016.
  • Talete srl, Dragon (Software for Molecular Descriptor Calculation) Version 6.0. http://www.Talete.Mi.It/, 2012.
  • H.H. Liu, X.H. Yang, and R. Lu, Development of classification model and QSAR model for predicting binding affinity of endocrine disrupting chemicals to human sex hormone-binding globulin, Chemosphere 156 (2016), pp. 1–7.
  • U.S. EPA, Estimation Programs Interface Suite™ for Microsoft Windows, v 4.10. United States Environmental Protection Agency, Washington, DC, USA, 2012.
  • H.H. Liu, X.H. Yang, C. Yin, M.B. Wei, X. He, Development of predictive models for predicting binding affinity of endocrine disrupting chemicals to fish sex hormone-binding globulin. Ecotoxicol. Environ. Saf. 136 (2017), pp. 46–54.
  • C. Yin, X.H. Yang, M.B. Wei, and H.H. Liu, Predictive models for identifying the binding activity of structurally diverse chemicals to human pregnane X receptor, Environ. Sci. Pollut. Res. 24 (2017), pp. 20063–20071.
  • J.Y. He, T. Peng, X.H. Yang, and H.H. Liu, Development of QSAR models for predicting the binding affinity of endocrine disrupting chemicals to eight fish estrogen receptor, Ecotoxicol. Environ. Saf. 148 (2018), pp. 211–219.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011), pp. 2825–2830.
  • S. Kovarich, E. Papa, and P. Gramatica, QSAR classification models for the prediction of endocrine disrupting activity of brominated flame retardants, J. Hazard. Mater. 190 (2011), pp. 106–112.
  • L. Sun, C. Zhang, Y.J. Chen, S.L. Zhuang, W.H. Li, P.W. Lee, and Y. Tang, In silico prediction of chemical aquatic toxicity with chemical category approaches and structural alerts, Toxicol. Res. 4 (2015), pp. 452–463.
  • P. Dao, K. Wang, C. Collins, M. Ester, A. Lapuk, and S.C. Sahinalp, Optimally discriminative subnetwork markers predict response to chemotherapy, Bioinformatics 27 (2011), pp. i205–i213.
  • F. Como, E. Carnesecchi, S. Volani, J.L. Dorne, J. Richardson, A. Bassan, M. Pavan, and E. Benfenati, Predicting acute contact toxicity of pesticides in honeybees (Apis mellifera) through a k-nearest neighbor model, Chemosphere 166 (2017), pp. 438–444.
  • T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett. 27 (2006), pp. 861–874.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.
  • R. Todeschini and V. Consonni, Molecular Descriptors for Chemoinformatics, 2nd ed, Wiley-VCH, Weinheim, Germany, 2009, pp. 460−461.
  • K. Khan and K. Roy, Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach, SAR QSAR Environ. Res. 28 (2017), pp. 567–594.
  • G. Tugcu, M.T. Saçan, M. Vračko, M. Novič, and N. Minovski, QSTR modelling of the acute toxicity of pharmaceuticals to fish, SAR QSAR Environ. Res. 23 (2012), pp. 297–310.
  • O. Devinyak, D. Havrylyuk, and R. Lesyk, 3D-MoRSE descriptors explained, J. Mol. Graph. Model. 54 (2014), pp. 194–203.
  • M.C. Hemmer, V. Steinhauer, and J. Gasteiger, Deriving the 3D structure of organic molecules from their infrared spectra, Vib. Spectrosc. 19 (1999), pp. 151–164.
  • M.P. González, J. Caballero, A.M. Helguera, M. Garriga, G. González, and M. Fernández, 2D autocorrelation modelling of the inhibitory activity of cytokinin-derived cyclin-dependent kinase inhibitors, Bull. Math. Biol. 68 (2006), pp. 735–751.
  • P. Yang, J.W. Chen, S. Chen, X. Yuan, K.W. Schramm, and A. Kettrup, QSPR models for physicochemical properties of polychlorinated diphenyl ethers, Sci. Total. Environ. 305 (2003), pp. 65–76.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.