202
Views
6
CrossRef citations to date
0
Altmetric
Articles

Design of new CD38 inhibitors based on CoMFA modelling and molecular docking analysis of 4‑amino-8-quinoline carboxamides and 2,4-diamino-8-quinazoline carboxamides

&
Pages 21-38 | Received 11 Sep 2018, Accepted 05 Nov 2018, Published online: 29 Nov 2018

References

  • K.A. Frerichs, N.A. Nagy, P.L. Lindenbergh, P. Bosman, J.M. Soto, M. Broekmans, R.W.J. Groen, M. Themeli, L. Nieuwenhuis, C. Stege, I.S. Nijhof, T. Mutis, S. Zweegman, H.M. Lokhorst, and N.W.C.J. van de Donk, CD38-targeting antibodies in multiple myeloma: Mechanisms of action and clinical experience, Expert Rev. Clin. Immunol. 14 (2018), pp. 197–206.
  • G. Shubinsky and M. Schlesinger, The CD38 lymphocyte differentiation marker: New insight into its ectoenzymatic activity and its role as a signal transducer, Immunity 7 (1997), pp. 315–324.
  • Q. Liu, I.A. Kriksunov, R. Graeff, C. Munshi, H.C. Lee, and Q. Hao, Crystal structure of human CD38 extracellular domain, Structure 13 (2005), pp. 1331–1339.
  • S. Deaglio, S. Aydin, T. Vaisitti, L. Bergui, and F. Malavasi, CD38 at the junction between prognostic marker and therapeutic target, Trends Mol. Med. 14 (2008), pp. 210–218.
  • E. Ferrero and F. Malavasi, The metamorphosis of a molecule: From soluble enzyme to the leukocyte receptor CD38, J. Leukoc. Biol. 65 (1999), pp. 151–161.
  • S. Deaglio, T. Vaisitti, S. Serra1, V. Audrito, C. Bologna, G. D’Arena, L. Laurenti, D. Gottardi, and F. Malavasi, CD38 in chronic lymphocytic leukemia: From bench to bedside?, Mini Rev. Med. Chem. 11 (2011), pp. 503–507.
  • E.N. Chini, C.C.S. Chini, J.M.E. Netto, G.C. de Oliveira, and W. van Schooten, The pharmacology of CD38/NADase: An emerging target in cancer and diseases of aging, Trends Pharmacol. Sci. 39 (2018), pp. 424–436.
  • P. Aksoy, T.A. White, M. Thompson, and E.N. Chini, Regulation of intracellular levels of NAD: A novel role for CD38, Biochem. Biophys. Res. Commun. 345 (2006), pp. 1386–1392.
  • E.N. Chini, CD38 as a regulator of cellular NAD: A novel potential pharmacological target for metabolic conditions, Curr. Pharm. Des. 15 (2009), pp. 57–63.
  • A.B. Salmina, O. Lopatina, M.V. Ekimova, S.V. Mikhutkina, and H. Higashida, CD38/cyclic ADP-ribose system: A new player for oxytocin secretion and regulation of social behavior, J. Neuroendocrinol. 22 (2010), pp. 380–392.
  • L. Sun, J. Iqbal, S. Zaidi, L.L. Zhu, X. Zhang, Y. Peng, and M. Zaidi, Structure and functional regulation of the CD38 promoter, Biochem. Biophys. Res. Commun. 341 (2006), pp. 804–809.
  • E. Blacher, B.B. Baruch, A. Levy, N. Geva, K.D. Green, S. Garneau-Tsodikova, M. Fridman, and R. Stein, Inhibition of glioma progression by a newly discovered CD38 inhibitor, Int. J. Cancer 136 (2015), pp. 1422–1433.
  • B. Sepehri and R. Ghavami, The identification of new CD38 inhibitors by combined structure and ligand based virtual screening approaches of ZINC database, Lett. Drug Des. Discov. 15 (2018), pp. 654–660.
  • X.H. Guan, X. Hong, N. Zhao, X.H. Liu, Y.F. Xiao, T.T. Chen, L.B. Deng, X.L. Wang, J.B. Wang, G.J Ji, M. Fu, K.Y. Deng, and H.B. Xin, CD38 promotes angiotensin II-induced cardiac hypertrophy, J. Cell. Mol. Med. 21 (2017), pp. 1492–1502.
  • P. Aksoy, C. Escande, T.A. White, M. Thompson, S. Soares, J.C. Benech, and E.N. Chini, Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38, Biochem. Biophys. Res. Commun. 349 (2006), pp. 353–359.
  • J. Camacho-Pereira, M.G. Tarragó, C.C.S. Chini, V. Nin, C. Escande, G.M. Warner, A.S. Puranik, R.A. Schoon, J.M. Reid, A. Galina, and E.N. Chini, CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism, Cell Metab. 23 (2016), pp. 1127–1139.
  • N.W.C.J. van de Donk, M.L. Janmaat, T. Mutis, J.J.L. van Bueren, T. Ahmadi, A.K. Sasser, H.M. Lokhorst, and P.W.H.I. Parren, Monoclonal antibodies targeting CD38 in hematological malignancies and beyond, Immunol. Rev. 270 (2016), pp. 95–112.
  • B. Sepehri and R. Ghavami, Molecular docking and CoMFA studies of thiazoloquin(az)olin(on)es as CD38 inhibitors: Determination of inhibitory mechanism, pharmacophore interactions, and design of new inhibitors, J. Biomol. Struct. Dyn. 35 (2017), pp. 1890–1898.
  • S. Zhang, X. Xue, L. Zhang, L. Zhang, and Z. Liu, Comparative analysis of pharmacophore features and quantitative structure–activity relationships for CD38 covalent and non-covalent inhibitors, Chem. Biol. Drug Des. 86 (2015), pp. 1411–1424.
  • X. Gao and Y. Ren, Identification of thiazoloquin(az)olin(on)es derivatives as CD38 inhibitors through 3D-QSAR and molecular docking simulations, Lett. Drug Des. Discov. 14 (2017), pp. 175–185.
  • J.D. Becherer, E.E. Boros, T.Y. Carpenter, D.J. Cowan, D.N. Deaton, C.D. Haffner, M.R. Jeune, I.W. Kaldor, J.C. Poole, F. Preugschat, T.R. Rheault, C.A. Schulte, B.G. Shearer, T.W. Shearer, L.M. Shewchuk, T.L. Smalley Jr, E.L. Stewart, J.D. Stuart, and J.C. Ulrich, Discovery of 4‑amino-8-quinoline carboxamides as novel, submicromolar inhibitors of NAD-hydrolyzing enzyme CD38, J. Med. Chem. 58 (2015), pp. 7021–7056.
  • D.N. Deaton, C.D. Haffner, B.R. Henke, M.R. Jeune, B.G. Shearer, E.L. Stewart, J.D. Stuart, and J.C. Ulrich, 2,4-Diamino-8-quinazoline carboxamides as novel, potent inhibitors of the NAD hydrolyzing enzyme CD38: Exploration of the 2-position structure–activity relationships, Bioorg. Med. Chem. 26 (2018), pp. 2107–2150.
  • M.F. Andrada, E.G. Vega-Hissi, M.R. Estrada, and J.C.G. Martinez, Impact assessment of the rational selection of training and test sets on the predictive ability of QSAR models, SAR QSAR Environ. Res. 28 (2017), pp. 1011–1023.
  • HyperChem 7.1. Hypercube, Inc., Gainesville,  USA; software available at http://www.hyper.com.
  • M. O'Boyle, C.A. James Banck, T. Vandermeersch, and G.R Hutchison, Open babel: an open chemical toolbox, Int.J. Cheminform. 3 (2001), 33. doi:10.1186/1758-2946-3-33.
  • P. Tosco and T. Balle, Open3DALIGN 2.27 software available at http://open3dalign.sourceforge.net.
  • P. Tosco, T. Balle, and F. Shiri, Open3DALIGN: An open-source software aimed at unsupervised ligand alignment, J. Comput. Aided Mol. Des. 25 (2011), pp. 777–783.
  • P. Tosco and T. Balle, Open3DQSAR 2.282 software available at http://open3dqsar.sourceforge.net.
  • P. Tosco and T. Balle, Open3DQSAR: A new open-source software aimed at high-throughput chemometric analysis of molecular interaction fields, J. Mol. Model. 17 (2001), pp. 201–208.
  • Schrödinger, PyMOL (1.7.0.0).New York, USA; software available at http://www.pymol.org.
  • MGLTools 1.5.6, Molecular Graphics Laboratory (MGL) of the Scripps Research Institute,  La Jolla, USA, 2012; software available at http://mgltools.scripps.edu.
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461.
  • O. Trott and A.J. Olson, AutoDock Vina 1.1.2; software available at http://vina.scripps.edu/.
  • Discovery Studio 16.1.0; , Accelrys, BIOVIA, San Diego, USA; software available at www.accelrys.com.
  • N.J. Richmond, P. Willett, and R.D. Clark, Alignment of three-dimensional molecules using an image recognition algorithm, J. Mol. Graph. Model. 23 (2004), pp. 199–209.
  • G. Cruciani, Molecular Interaction Fields: Applications in Drug Discovery and ADME Prediction, Wiley, Weinheim, 2006.
  • M.A. Kastenholz, M. Pastor, G. Cruciani, E.E.J. Haaksma, and T. Fox, GRID/CPCA: A new computational tool to design selective ligands, J. Med. Chem. 43 (2000), pp. 3033–3044.
  • M. Pastor, G. Cruciani, and S. Clementi, Smart region definition: A new way to improve the predictive ability and interpretability of three-dimensional quantitative structure-activity relationships, J. Med. Chem. 40 (1997), pp. 1455–1464.
  • M. Baroni, G. Costantino, G. Cruciani, D. Riganelli, R. Valigi, and S. Clementi, Generating optimal linear PLS estimations (GOLPE): An advanced chemometric tool for handling 3D-QSAR problems, Mol Inform. 12 (1993), pp. 9–20.
  • B. Sepehri, N. Omidikia, M. Kompany-Zareh, and R. Ghavami, Predictive and descriptive CoMFA models: The effect of variable selection, Comb. Chem. High Throughput Screen. 21 (2018), pp. 117–124.
  • B. Sepehri and R. Ghavami, Design new P-glycoprotein modulators based on molecular docking and CoMFA study of a, b-unsaturated carbonyl-based compounds and oxime analogs as anticancer agents, J. Mol. Struct. 1130 (2017), pp. 922–928.
  • A. Golbraikh and A. Tropsha, Beware of q2!, J. Mol. Graph. Model. 20 (2002), pp. 269–276.
  • G. Melagraki and A. Afantitis, Enalos KNIME nodes: Exploring corrosion inhibition of steel in acidic medium, Chemom. Intel. Lab. 123 (2013), pp. 9–14.
  • G. Melagraki and A. Afantitis, Enalos InSilicoNano platform: An online decision support tool for the design and virtual screening of nanoparticles, RSC Adv. 4 (2014), pp. 50713–50725.
  • P.K. Ojha, I. Mitra, R.N. Das, and K. Roy, Further exploring rm2 metrics for validation of QSPR models, Chemom. Intell. Lab. 107 (2011), pp. 194–205.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inf. 29 (2010), pp. 476–488.
  • J.F. Aranda, D.E. Bacelo, M.S. Leguizamón Aparicio, M.A. Ocsachoque, E.A. Castro, and P.R. Duchowicz, Predicting the bioconcentration factor through a conformation-independent QSPR study, SAR QSAR Environ. Res. 28 (2017), pp. 749–763.
  • F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri, V. Consonni, and R. Todeschini, Comparison of different approaches to define the applicability domain of QSAR models, Molecules 17 (2012), pp. 4791–4810.
  • D. Gadaleta, G.F. Mangiatordi, M. Catto, A. Carotti, and O. Nicolotti, Applicability domain for QSAR models: Where theory meets reality, Int. J. Quant. Struct.-Prop. Relat. 1 (2016), pp. 45–63.
  • B. Sepehri, M. Rezaei, and R. Ghavami, The in silico identification of potent anti-cancer agents by targeting the ATP binding site of the N-domain of HSP90, SAR QSAR Environ, Res. 29 (2018), pp. 551–565.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.