264
Views
7
CrossRef citations to date
0
Altmetric
Articles

Identification of potential CRAC channel inhibitors: Pharmacophore mapping, 3D-QSAR modelling, and molecular docking approach

&
Pages 81-108 | Received 27 Sep 2018, Published online: 18 Feb 2019

References

  • G.S. Firestein, Evolving concepts of rheumatoid arthritis, Nature 423 (2003), pp. 356–361.
  • I.B. McInnes and G. Schett, The pathogenesis of rheumatoid arthritis, N. Engl. J. Med. 23 (2011), pp. 2205–2019.
  • J.S. Smolen and G. Steiner, Therapeutic strategies for rheumatoid arthritis, Nat. Rev. Drug Discov. 2 (2003), pp. 473–488.
  • M. Vaeth and S. Feske, Ion channelopathies of the immune system, Curr. Opin. Immunol. 52 (2018), pp. 39–50.
  • M.J. Berridge, M.D. Bootman, and H.L. Roderick, Calcium: Calcium signalling: Dynamics, homeostasis and remodelling, Nature Rev. Molec. Cell. Biol. 4 (2003), p. 517.
  • Y. Mei, J.E. Barrett and H. Hu, Calcium release-activated calcium channels and pain, Cell Calcium 74 (2018), pp. 180–185.
  • M. Prakriya and R.S. Lewis, CRAC channels: Activation, permeation, and the search for a molecular identity, Cell Calcium 33 (2003), pp. 311–321.
  • I. Frischauf, M. Fahrner, I. Jardín, and C. Romanin, The STIM1: Orai interaction, Adv. Exp. Med. Biol. 898 (2016), pp. 25–46.
  • R.W. Guo and L. Huang, New insights into the activation mechanism of store-operated calcium channels: Roles of STIM and Orai, J. Zhejiang Univ. Sci. B 9 (2008), pp. 591–601.
  • S. Srikanth and Y. Gwack, Orai1-NFAT signalling pathway triggered by T cell receptor stimulation, Mol. Cells 35 (2013), pp. 182–194.
  • W.C. Chang, C.H. Lee, T. Hirota, L.F. Wang, S. Doi, A. Miyatake, T. Enomoto, K. Tomita, M. Sakashita, T. Yamada, S. Fujieda, K. Ebe, H. Saeki, S. Takeuchi, M. Furue, W.C. Chen, Y.C. Chiu, W.P. Chang, C.H. Hong, E. Hsi, S.H. Juo, H.S. Yu, Y. Nakamura, and M. Tamari, ORAI1 genetic polymorphisms associated with the susceptibility of atopic dermatitis in Japanese and Taiwanese populations, PLoS One 1 (2012), p. e29387.
  • K.A. Stauderman, CRAC channels as targets for drug discovery and development, Cell Calcium 74 (2018), pp. 147–159.
  • H.Z. Zhang, X.L. Xu, H.Y. Chen, S. Ali, D. Wang, J.W. Yu, T. Xu, and F.J. Nan, Discovery and structural optimization of 1-phenyl-3-(1-phenylethyl) urea derivatives as novel inhibitors of CRAC channel, Acta Pharmacol. Sin. 9 (2015), pp. 1137–1144.
  • I. Bogeski, D. Al-Ansary, B. Qu, B.A. Niemeyer, M. Hoth, and C. Peinelt, Pharmacology of ORAI channels as a tool to understand their physiological functions, Expert Rev. Clin. Pharmacol. 3 (2010), pp. 291–303.
  • S. Feske, Y. Gwack, M. Prakriya, S. Srikanth, S.H. Pupp, B. Tanasa, P.G. Hogan, R.S. Lewis, M. Daly, and A. Rao, A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature 441 (2006), pp. 179–185.
  • Y. Yonetoku, H. Kubota, Y. Okamoto, A. Toyoshima, M. Funatsu, J. Ishikawa, M. Takeuchi, M. Ohta, and S. Tsukamoto, Novel potent and selective calcium-release-activated calcium (CRAC) channel inhibitors. Part 1: Synthesis and inhibitory activity of 5-(1-methyl-3-trifluoromethyl-1H-pyrazol-5-yl)-2-thiophenecarboxamides, Bioorg. Med. Chem. 14 (2006), pp. 4750–4760.
  • Y. Yonetoku, H. Kubota, Y. Okamoto, J. Ishikawa, M. Takeuchi, M. Ohta, and S. Tsukamoto, Novel potent and selective calcium-release-activated calcium (CRAC) channel inhibitors. Part 2: Synthesis and inhibitory activity of aryl-3-trifluoromethylpyrazoles, Bioorg. Med. Chem. 14 (2006), pp. 5370–5383.
  • Y. Yonetoku, H. Kubota, Y. Miyazaki, Y. Okamoto, M. Funatsu, N. Yoshimura-Ishikawa, J. Ishikawa, T. Yoshino, M. Takeuchi, and M. Ohta, Novel potent and selective Ca2+ release-activated Ca2+ (CRAC) channel inhibitors. Part 3: Synthesis and CRAC channel inhibitory activity of 4’-[(trifluoromethyl)pyrazol-1-yl] carboxanilides, Bioorg. Med. Chem. 16 (2008), pp. 9457–9466.
  • C. Esteve, J. González, S. Gual, L. Vidal, S. Alzina, S. Sentellas, I. Jover, R. Horrillo, J. De Alba, M. Miralpeix, G. Tarrasón, and B. Vidal, Discovery of 7-azaindole derivatives as potent Orai inhibitors showing efficacy in a preclinical model of asthma, Bioorg. Med. Chem. Lett. 6 (2015), pp. 1217–1222.
  • B. Blass, Benzoxazine derivatives as CRAC modulators, ACS Med. Chem. Lett. 4 (2013), pp. 1020–1021.
  • C. Selvaraj, S.K. Tripathi, K.K Reddy, and S.K. Singh, Tool development for prediction of pIC50 values from the IC50 values-A pIC value calculator, Curr. Trends Biotechnol. Pharm. 5 (2011), pp. 1104–1109.
  • LigPrep, Version 3.10. Schrödinger, LLC New York, NY, 2016.
  • PHASE, Version 4.9. Schrödinger, LLC New York, NY, 2016.
  • S.L. Dixon, A.M. Smondyrev, and S.N. Rao, PHASE: A novel approach to pharmacophore modeling and 3D database searching, Chem. Biol. Drug Design 67 (2006), pp. 370–372.
  • M.F. Khan, G. Verma, W. Akhtar, M. Shaquiquzzaman, M. Akhter, M.A. Rizvi, and M.M. Alam, Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1, 3, 4-thiadiazole amides and sulfonamides as antitubulin agents, Arab. J. Chem. (2016). doi:10.1016/j.arabjc.2016.11.004
  • S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw, and R.A. Friesner, PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results, J. Comput-Aided Molec. Design 20 (2006). pp. 647–671.
  • J. Taminau, G. Thijs, and H. De Winter, Pharao: Pharmacophore alignment and optimization, J. Mol. Graph Model. 27 (2008) pp. 161–169.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inf. 29 (2010), pp. 476–488.
  • A. Cherkasov, E.N. Muratov, D. Fourches, A. Varnek, I.I. Baskin, M. Cronin, J. Dearden, P. Gramatica, Y.C. Martin, R. Todeschini, V. Consonni, V.E. Kuz’min, R. Cramer, R. Benigni, C. Yang, J. Rathman, L. Terfloth, J. Gasteiger, A. Richard, and A. Tropsha, QSAR modeling: Where have you been? Where are you going to?, J. Med. Chem. 57 (2014), pp. 4977–5010.
  • G. Folkers, A. Merz, and D. Rognan, Theory methods and applications, in 3D-QSAR in Drug Design, H. Kubinyi, ed., ESCOM, Leiden, the Netherlands, 1994, pp. 583–618.
  • M. Baroni, S. Clementi, G. Cruciani, G. Costantino, and D. Riganelli, Predictive ability of regression models. Part II: Selection of the best predictive PLS model, J. Chemom. 6 (1992), pp. 347–356.
  • B. Sampath and K. Sankaranarayanan, Glu106 targeted inhibitors of ORAI1 as potential Ca2+ release-activated Ca2+ (CRAC) channel blockers – molecular modeling and docking studies, J. Recept. Signal. Transduct Res. 36 (2016), pp. 572–585.
  • J. Sivakamavalli, C. Selvaraj, S.K. Singh, and B. Vaseeharan, Modeling of macromolecular proteins in prophenoloxidase cascade through experimental and computational approaches, Biotechnol. Appl. Biochem. 63 (2016), pp. 779–788.
  • R.A. Friesner, J.L. Banks, R.B. Murphy, T.A. Halgren, J.J. Klicic, D.T. Mainz, and P.S. Shenkin, Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy, J. Med. Chem. 47 (2004), pp. 1739–1749.
  • C. Selvaraj, G. Krishnasamy, S.S. Jagtap, S.K. Patel, S.S. Dhiman, T.S. Kim, S.K. Singh, and J.K. Lee, Structural insights into the binding mode of d-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations, Biochem. Engineer. J. 114 (2016), pp. 244–256.
  • The PyMOL Molecular Graphics System, Version 2.0 Schrödinger, LLC, NY; software available at http://www.pymol.org.
  • P.D. Lyne, M.L. Lamb, and J.C. Saeh, Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring, J. Med. Chem. 49 (2006), pp. 4805–4808.
  • SiteMap, Version 3.0, Schrödinger, LLC, New York, NY, 2018.
  • H. Dong, G. Fiorin, V. Carnevale, W. Treptow, and M.L. Klein, Pore waters regulate ion permeation in a calcium release-activated calcium channel, Proc. Natl. Acad. Sci. USA 110 (2013), pp. 17332–17337
  • A. Jairaman and M. Prakriya, Molecular pharmacology of store-operated CRAC channels, Channels (Austin) 7 (2013), pp. 402–414.
  • M. Prakriya, The molecular physiology of CRAC channels, Immunol. Rev. 1 (2009), pp. 88–98.
  • G. Ma, L. He, J. Jing, P. Tan, Y. Huang, and Y. Zhou, Engineered cross-linking to study the pore architecture of the CRAC channel, Meth. Mol. Biol. 1843 (2018), pp. 147–166.
  • Y. Zhou, S. Ramachandran, M. Oh-Hora, A. Rao, and P.G Hogan, Pore architecture of the ORAI1 store-operated calcium channel, Proc. Natl. Acad. Sci. USA 107 (2010), pp. 4896–4901.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.