159
Views
14
CrossRef citations to date
0
Altmetric
Articles

QSAR classification model for diverse series of antifungal agents based on improved binary differential search algorithm

, ORCID Icon, ORCID Icon, &
Pages 131-143 | Received 31 Oct 2018, Accepted 08 Jan 2019, Published online: 08 Feb 2019

References

  • M. Arisoy, O. Temiz-Arpaci, I. Yildiz, F. Kaynak-Onurdag, E. Aki, I. Yalcin, and U. Abbasoglu, Synthesis, antimicrobial activity and QSAR studies of 2,5-disubstituted benzoxazoles, SAR QSAR Environ. Res. 19 (2008), pp. 589–612.
  • V.S. Georgiev, Membrane transporters and antifungal drug resistance, Curr. Drug Targets 1 (2000), pp. 261–284.
  • J.-J. Xing, Y.-F. Liu, Y.-Q. Li, H. Gong, and Y.-P. Zhou, QSAR classification model for diverse series of antimicrobial agents using classification tree configured by modified particle swarm optimization, Chemom. Intell. Lab. Syst. 137 (2014), pp. 82–90.
  • R.K. Singla and V. Bhat G, QSAR model for predicting the fungicidal action of 1,2,4-triazole derivatives against Candida albicans, J. Enzym. Inhib. Med. Chem. 25 (2010), pp. 696–701.
  • R. Medina Marrero, Y. Marrero-Ponce, S.J. Barigye, Y. Echeverría Díaz, R. Acevedo-Barrios, G.M. Casañola-Martín, M. García Bernal, F. Torrens, and F. Pérez-Giménez, QuBiLs-MAS method in early drug discovery and rational drug identification of antifungal agents, SAR QSAR Environ. Res. 26 (2015), pp. 943–958.
  • R. Di Santo, A. Tafi, R. Costi, M. Botta, M. Artico, F. Corelli, M. Forte, F. Caporuscio, L. Angiolella, and A.T. Palamara, Antifungal agents. 11. N-substituted derivatives of 1-[(aryl)(4-aryl-1H-pyrrol-3-yl)methyl]-1H-imidazole: Synthesis, anti-Candida activity, and QSAR studies, J. Med. Chem. 48 (2005), pp. 5140–5153.
  • N.H. Georgopapadakou, Antifungals: Mechanism of action and resistance, established and novel drugs, Curr. Opin. Microbiol. 1 (1998), pp. 547–557.
  • K. Takrouri, G. Oren, I. Polacheck, E. Sionov, E. Shalom, J. Katzhendler, and M. Srebnik, Synthesis and antifungal activity of a novel series of alkyldimethylamine cyanoboranes and their derivatives, J. Med. Chem. 49 (2006), pp. 4879–4885.
  • T.J. Walsh, C. Gonzalez, E. Roilides, B.U. Mueller, N. Ali, L.L. Lewis, T.O. Whitcomb, D.J. Marshall, and P.A. Pizzo, Fungemia in children infected with the human immunodeficiency virus: New epidemiologic patterns, emerging pathogens, and improved outcome with antifungal therapy, Clin. Infect. Dis. 20 (1995), pp. 900–906.
  • P.R. Duchowicz, M.G. Vitale, E.A. Castro, M. Fernández, and J. Caballero, QSAR analysis for heterocyclic antifungals, Bioorg. Med. Chem. 15 (2007), pp. 2680–2689.
  • N.-H. Nam, S. Sardari, M. Selecky, and K. Parang, Carboxylic acid and phosphate ester derivatives of fluconazole: Synthesis and antifungal activities, Bioorg. Med. Chem. 12 (2004), pp. 6255–6269.
  • V.M. Gokhale and V.M. Kulkarni, Understanding the antifungal activity of terbinafine analogues using quantitative structure–activity relationship (QSAR) models, Bioorg. Med. Chem. 8 (2000), pp. 2487–2499.
  • B. Narasimhan, V. Judge, R. Narang, R. Ohlan, and S. Ohlan, Quantitative structure–activity relationship studies for prediction of antimicrobial activity of synthesized 2,4-hexadienoic acid derivatives, Bioorg. Med. Chem. Lett. 17 (2007), pp. 5836–5845.
  • M.D. Altıntop, Z.A. Kaplancıklı, G.A. Çiftçi, and R. Demirel, Synthesis and biological evaluation of thiazoline derivatives as new antimicrobial and anticancer agents, Eur. J. Med. Chem. 74 (2014), pp. 264–277.
  • B. Narasimhan, D. Belsare, D. Pharande, V. Mourya, and A. Dhake, Esters, amides and substituted derivatives of cinnamic acid: Synthesis, antimicrobial activity and QSAR investigations, Eur. J. Med. Chem. 39 (2004), pp. 827–834.
  • D. Sharma, B. Narasimhan, P. Kumar, and A. Jalbout, Synthesis and QSAR evaluation of 2-(substituted phenyl)-1H-benzimidazoles and [2-(substituted phenyl)-benzimidazol-1-yl]-pyridin-3-yl-methanones, Eur. J. Med. Chem. 44 (2009), pp. 1119–1127.
  • A.R. Katritzky, S.H. Slavov, D.A. Dobchev, and M. Karelson, QSAR modeling of the antifungal activity against Candida albicans for a diverse set of organic compounds, Bioorg. Med. Chem. 16 (2008), pp. 7055–7069.
  • S.-M. Tan, J. Jiao, X.-L. Zhu, Y.-P. Zhou, D.-D. Song, H. Gong, and R.-Q. Yu, QSAR studies of a diverse series of antimicrobial agents against Candida albicans by classification and regression trees, Chemom. Intell. Lab. Syst. 103 (2010), pp. 184–190.
  • R. Sabet and A. Fassihi, QSAR study of antimicrobial 3-hydroxypyridine-4-one and 3-hydroxypyran-4-one derivatives using different chemometric tools, Int. J. Mol. Sci. 9 (2008), pp. 2407–2423.
  • A. Buciński, A. Socha, M. Wnuk, T. Bączek, A. Nowaczyk, J. Krysiński, K. Goryński, and M. Koba, Artificial neural networks in prediction of antifungal activity of a series of pyridine derivatives against Candida albicans, J. Microbiol. Methods 76 (2009), pp. 25–29.
  • A. Worachartcheewan, C. Nantasenamat, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul, Predicting antimicrobial activities of benzimidazole derivatives, Med. Chem. Res. 22 (2013), pp. 5418–5430.
  • K. Lal, C.P. Kaushik, and A. Kumar, Antimicrobial evaluation, QSAR and docking studies of amide-linked 1,4-disubstituted 1,2,3-bistriazoles, Med. Chem. Res. 24 (2015), pp. 3258–3271.
  • C.-W. Cho, J.-S. Park, S. Stolte, and Y.-S. Yun, Modelling for antimicrobial activities of ionic liquids towards Escherichia coli, Staphylococcus aureus and Candida albicans using linear free energy relationship descriptors, J. Hazard. Mater. 311 (2016), pp. 168–175.
  • R. Montes, A. Perez, C. Medeiros, M. Araújo, E. Lima, M. Scotti, and D. Sousa, Synthesis, antifungal evaluation and in silico study of N-(4-halobenzyl)amides, Molecules 21 (2016), p. 1716.
  • F. Yan, W. He, Q. Jia, S. Xia, and Q. Wang, QSAR models for describing the toxicological effects of ILs against Candida albicans based on norm indexes, Chemosphere 201 (2018), pp. 417–424.
  • N.C. Desai, G.M. Kotadiya, A.R. Trivedi, V.M. Khedkar, and P.C. Jha, Synthesis, biological valuation, and QSAR studies of novel pyrazole bearing pyridyl oxadiazole analogues as potential antimicrobial agents, Med. Chem. Res. 25 (2016), pp. 712–727.
  • P. Civicioglu, Transforming geocentric Cartesian coordinates to geodetic coordinates by using differential search algorithm, Comput. Geosci. 46 (2012), pp. 229–247.
  • J. Liu, K.L. Teo, X. Wang, and C. Wu, An exact penalty function-based differential search algorithm for constrained global optimization, Soft Comput. 20 (2016), pp. 1305–1313.
  • J. Liu, C. Wu, J. Cao, X. Wang, and K.L. Teo, A Binary differential search algorithm for the 0–1 multidimensional knapsack problem, Appl. Math. Model. 40 (2016), pp. 9788–9805.
  • J. Liu, C. Wu, G. Wu, and X. Wang, A novel differential search algorithm and applications for structure design, Appl. Math. Comput. 268 (2015), pp. 246–269.
  • V. Trianni, E. Tuci, K.M. Passino, and J.A.R. Marshall, Swarm cognition: An interdisciplinary approach to the study of self-organising biological collectives, Swarm Intell. 5 (2011), pp. 3–18.
  • S. Mirjalili and A. Lewis, S-shaped versus V-shaped transfer functions for binary particle swarm optimization, Swarm Evol. Comput. 9 (2013), pp. 1–14.
  • X. Teng, H. Dong, and X. Zhou, Adaptive feature selection using v-shaped binary particle swarm optimization, PLoS One 12 (2017), pp. e0173907.
  • J. Kennedy and R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, volume 5, pp. 4104–4108.
  • M. Mafarja, I. Aljarah, A.A. Heidari, H. Faris, P. Fournier-Viger, X. Li, and S. Mirjalili, Binary dragonfly optimization for feature selection using time-varying transfer functions, Knowledge-Based Syst. 161 (2018), pp. 185–204.
  • M.K. Qasim, Z.Y. Algamal, and H.T.M. Ali, A binary QSAR model for classifying neuraminidase inhibitors of influenza A viruses (H1N1) using the combined minimum redundancy maximum relevancy criterion with the sparse support vector machine, SAR QSAR Environ. Res. 29 (2018), pp. 517–527.
  • G.M. Weiss and F. Provost, Learning when training data are costly: The effect of class distribution on tree induction, J. Artif. Intell. Res. 19 (2003), pp. 315–354.
  • M. Ghorbanzadeh, J. Zhang, and P.L. Andersson, Binary classification model to predict developmental toxicity of industrial chemicals in zebrafish, J. Chem. 30 (2016), pp. 298–307.
  • K. Roy, S. Kar, and R.N. Das, Statistical Methods in QSAR/QSPR, in A Primer on QSAR/QSPR Modeling: Fundamental Concepts, Springer International Publishing, Cham, 2015, pp. 37–59.
  • A. Pérez-Garrido, A.M. Helguera, F. Borges, M.N.D.S. Cordeiro, V. Rivero, and A.G. Escudero, Two new parameters based on distances in a receiver operating characteristic chart for the selection of classification models, J. Chem Inf. Model. 51 (2011), pp. 2746–2759.
  • W.H. Kruskal and W.A. Wallis, Use of ranks in one-criterion variance analysis, J. Am. Stat. Assoc. 47 (1952), pp. 583–621.
  • Z.Y. Algamal and M.H. Lee, A new adaptive L1-norm for optimal descriptor selection of high-dimensional QSAR classification model for anti-hepatitis C virus activity of thiourea derivatives, SAR QSAR Environ. Res. 28 (2017), pp. 75–90.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.