119
Views
5
CrossRef citations to date
0
Altmetric
Articles

An ensemble method for multi-type Gram-negative bacterial secreted protein prediction by integrating different PSSM-based features

&
Pages 181-194 | Received 06 Dec 2018, Accepted 20 Jan 2019, Published online: 11 Feb 2019

References

  • T.R.D. Costa, C. Felisberto-Rodrigues, A. Meir, M.S. Prevost, A. Redzej, M. Trokter, and G. Waksman, Secretion systems in Gram-negative bacteria: Structural and mechanistic insights, Nat. Rev. Microbiol. 13 (2015), pp. 343–359.
  • M. Desvaux, M. Hebraud, R. Talon, and I.R. Henderson, Secretion and subcellular localizations of bacterial proteins: A semantic awareness issue, Trends Microbiol. 17 (2009), pp. 139–145.
  • L. Yu, J. Luo, Y. Guo, Y. Li, X. Pu, and M. Li, In silico identification of Gram-negative bacterial secreted proteins from primary sequence, Comput. Biol. Med. 43 (2013), pp. 1177–1181.
  • J. Luo, W. Li, Z. Liu, Y. Guo, X. Pu, and M. Li, A sequence-based two-level method for the prediction of type I secreted RTX proteins, The Analyst 140 (2015), pp. 3048–3056.
  • Y. An, J. Wang, C. Li, A. Leier, T. Marquez-Lago, J. Wilksch, Y. Zhang, G.I. Webb, J. Song, and T. Lithgow, Comprehensive assessment and performance improvement of effector protein predictors for bacterial secretion systems III, IV and VI, Briefings Bioinf. 19 (2018), pp. 148–161.
  • J. Wang, B. Yang, A. Leier, T.T. Marquez-Lago, M. Hayashida, A. Rocker, Y. Zhang, T. Akutsu, K.C. Chou, R.A. Strugnell, J. Song, and T. Lithgow, Bastion6: A bioinformatics approach for accurate prediction of type VI secreted effectors, Bioinformatics 34 (2018), pp. 2546–2555.
  • X. Dong, Y.J. Zhang, and Z. Zhang, Using weakly conserved motifs hidden in secretion signals to identify type-III effectors from bacterial pathogen genomes, PLoS ONE 8 (2013), pp. e56632.
  • Y. Wang, Q. Zhang, M. A. Sun, and D. Guo, High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles, Bioinformatics 27 (2011), pp. 777–784.
  • E.M. Panina, S. Mattoo, N. Griffith, N.A. Kozak, M.H. Yuk, and J.F. Miller, A genome-wide screen identifies a Bordetellatype III secretion effector and candidate effectors in other species, Mol. Microbiol. 58 (2005), pp. 267–279.
  • X. Dong, X. Lu, and Z. Zhang, BEAN 2.0: An integrated web resource for the identification and functional analysis of type III secreted effectors, Database 2015 ( 2015), pp. bav064.
  • L. Zou, C. Nan, and F. Hu, Accurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles, Bioinformatics 29 (2013), pp. 3135–3142.
  • R. Arnold, S. Brandmaier, F. Kleine, P. Tischler, E. Heinz, S. Behrens, A. Niinikoski, H.W. Mewes, M. Horn, and T. Rattei, Sequence-based prediction of type III secreted proteins, PLoS Pathog. 5 (2009), pp. e1000376.
  • Y. Yang and S. Qi, A new feature selection method for computational prediction of type III secreted effectors, Int. J. Data Min. Bioinform. 10 (2014), pp. 440–454.
  • Y. Yang, J. Zhao, R.L. Morgan, W. Ma, and T. Jiang, Computational prediction of type III secreted proteins from Gram-negative bacteria, BMC Bioinformatics 11 (2010), pp. S47.
  • J.E. McDermott, A. Corrigan, E. Peterson, C. Oehmen, G. Niemann, E.D. Cambronne, D. Sharp, J.N. Adkins, R. Samudrala, and F. Heffron, Computational prediction of type III and IV secreted effectors in Gram-negative bacteria, Infect. Immun. 79 (2011), pp. 23–32.
  • L. Yu, F. Liu, L. Du, and Y. Li, An improved approach for rapidly identifying different types of Gram-negative bacterial secreted proteins, Natural Sci. 10 (2018), pp. 168–177.
  • S. Ding and S. Zhang, A Gram-negative bacterial secreted protein types prediction method based on PSI-BLAST profile, Biomed. Res. Int. 2016 (2016), pp. 3206741.
  • Y. Liang, S. Zhang, and S. Ding, Accurate prediction of Gram-negative bacterial secreted protein types by fusing multiple statistical features from PSI-BLAST profile, SAR QSAR Environ. Res. 29 (2018), pp. 469–481.
  • Y. Liang and S. Zhang, Identify Gram-negative bacterial secreted protein types by incorporating different modes of PSSM into Chou’s general PseAAC via Kullback-Leibler divergence, J. Theor. Biol. 454 (2018), pp. 22–29.
  • J. Wang, B. Yang, J. Revote, A. Leier, T.T. Marquez-Lago, G. Webb, J. Song, K.C. Chou, and T. Lithgow, POSSUM: A bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles, Bioinformatics 33 (2017), pp. 2756–2758.
  • L. Zhang, X. Zhao, and L. Kong, Predict protein structural class for low-similarity sequences by evolutionary difference information into the general form of Chou’s pseudo amino acid composition, J. Theor. Biol. 355 (2014), pp. 105–110.
  • I. Kampenusa and P. Zikmanis, Distinctive attributes for predicted secondary structures at terminal sequences of non-classically secreted proteins from proteobacteria, Cent. Eur. J. Biol. 3 (2008), pp. 320–326.
  • S.F. Altschul and E. V. Koonin, Iterated profile searches with PSI-BLAST – A tool for discovery in protein databases, Trends Biochem. Sci. 23 (1998), pp. 444–447.
  • E.Y.T. Juan, W.J. Li, J.H. Jhang, and C.H. Chiu, Predicting protein subcellular localizations for Gram-negative bacteria using DP-PSSM and support vector machines, International Conference on Complex, Intelligent and Software Intensive Systems, Fukuoka, Japan, 2009.
  • H. Saini, G. Raicar, S. Lal, A. Dehzangi, S. Imoto, and A. Sharma, Protein fold recognition using genetic algorithm optimized voting scheme and profile bigram, J. Soft. 11 (2016), pp. 756–767.
  • C.W. Cheng, E.C. Su, J.K. Hwang, T.Y. Sung, and W.L. Hsu, Predicting RNA-binding sites of proteins using support vector machines and evolutionary information, BMC Bioinformatics 9 (2008), pp. S6.
  • K.C. Chou and H.B. Shen, MemType-2L: A web server for predicting membrane proteins and their types by incorporating evolution information through Pse-PSSM, Biochem. Biophys. Res. Commun. 360 (2007), pp. 339–345.
  • C.C. Wang, Y. Fang, J. Xiao, and M. Li, Identification of RNA-binding sites in proteins by integrating various sequence information, Amino Acids 40 (2011), pp. 239–248.
  • C. Cortes and V. Vapnik, Support–vector networks, Mach. Learn. 20 (1995), pp. 273–297.
  • W. Chen, H. Ding, X. Zhou, H. Lin, and K.C. Chou, iRNA(m6A)-PseDNC: Identifying N6-methyladenosine sites using pseudo dinucleotide composition, Anal. Biochem. 561–562 (2018), pp. 59–65.
  • W. Chen, P. Feng, H. Yang, H. Ding, H. Lin, and K.C. Chou, iRNA-3typea: Identifying three types of modification at RNA’s adenosine sites, Mol. Ther. Nucleic Acids 11 (2018), pp. 468–474.
  • L. Zhang and L. Kong, iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou’s pseudo components, J. Theor. Biol. 441 (2018), pp. 1–8.
  • L. Kong, L. Zhang, and J. Lv, Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou’s pseudo amino acid composition, J. Theor. Biol. 344 (2014), pp. 12–18.
  • C.C. Chang and C.J. Lin, LIBSVM (A library for support vector machines); software available at https://www.csie.ntu.edu.tw/~cjlin/libsvm.
  • K.C. Chou, Some remarks on protein attribute prediction and pseudo amino acid composition, J. Theor. Biol. 273 (2011), pp. 236–247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.