306
Views
0
CrossRef citations to date
0
Altmetric
Articles

Structural and molecular modelling studies of antimelanogenic piper-amide TRPM1 antagonists

, , , & ORCID Icon
Pages 195-207 | Received 18 Dec 2018, Published online: 18 Feb 2019

References

  • E. Nicolaidou and A.D. Katsambas, Pigmentation disorders: Hyperpigmentation and hypopigmentation, Clin. Dermatol. 32 (2014), pp. 663–672.
  • S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, The impact of epidermal melanin on objective measurements of human skin colour, Pigment Cell Res. 15 (2002), pp. 119–126.
  • M. Kanlayavattanakul and N. Lourith, Skin hyperpigmentation treatment using herbs: A review of clinical evidences, J. Cosmet. Laser Ther. 20 (2018), pp. 123–131.
  • T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: Medicinal chemistry perspective of tyrosinase inhibitors, J. Enzyme Inhib. Med. Chem. 32 (2017), pp. 403–425.
  • K. Kameyama, C. Sakai, S. Kuge, S. Nishiyama, Y. Tomita, S. Ito, K. Wakamatsu, and V.J. Hearing, The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities, Pigment Cell Res. 8 (1995), pp. 97–104.
  • L. Guyonneau, F. Murisier, A. Rossier, A. Moulin, and F. Beermann, Melanocytes and pigmentation are affected in dopachrome tautomerase knockout mice, Mol. Cell. Biol. 24 (2004), pp. 3396–3403.
  • J.E. Harris, Chemical-induced vitiligo, Dermatol. Clin. 35 (2017), pp. 151–161.
  • E. Oancea, J. Vriens, S. Brauchi, J. Jun, I. Splawski, and D.E. Clapham, TRPM1 forms ion channels associated with melanin content in melanocytes, Sci. Signal. 2 (2009), pp. ra21.
  • S. Devi, R. Kedlaya, N. Maddodi, K.M.R. Bhat, C.S. Weber, H. Valdivia, and V. Setaluri, Calcium homeostasis in human melanocytes: Role of transient receptor potential melastatin 1 (TRPM1) and its regulation by ultraviolet light, Am. J. Physiol. Cell Physiol. 297 (2009), pp. C679.
  • V.S. Parmar, S.C. Jain, K.S. Bisht, R. Jain, P. Taneja, A. Jha, O.D. Tyagi, A.K. Prasad, J. Wengel, C.E. Olsen, and P.M. Boll, Phytochemistry of the genus Piper, Phytochemistry 46 (1997), pp. 597–673.
  • D.R. Silva, S. Baroni, A.E. Svidzinski, C.A. Bersani-Amado, and D.A.G Cortez, Anti-inflammatory activity of the extract, fractions and amides from the leaves of Piper ovatum Vahl (Piperaceae), J. Ethnopharmacol. 116 (2008), pp. 569–573.
  • J.V. Marques, A. de Oliveira, L. Raggi, M.C.M. Young, and M.J. Kato, Antifungal activity of natural and synthetic amides from Piper species, J. Braz. Chem. Soc. 21 (2010), pp. 1807–1813.
  • S. Li, C. Wang, W. Li, K. Koike, T. Nikaido, and M.W. Wang, Antidepressant-like effects of piperine and its derivative, antiepilepsirine, J. Asian Nat. Prod. Res. 9 (2007), pp. 421–430.
  • C.R. Pradeep and G. Kuttan, Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice, Clin. Exp. Metastasis 19 (2002), pp. 703–708.
  • R. Venkatasamy, L. Faas, A.R. Young, A. Raman, and R.C. Hider, Effects of piperine analogues on stimulation of melanocyte proliferation and melanocyte differentiation, Bioorg. Med. Chem. 12 (2004), pp. 1905–1920.
  • S. Kim, C. Lim, S. Lee, S. Lee, H. Cho, J.-Y. Lee, D.S. Shim, H.D. Park, and S. Kim, Column chromatography-free solution-phase synthesis of a natural piper-amide-like compound library, ACS Comb. Sci. 15 (2013), pp. 208–215.
  • E. Hwang, T.H. Lee, W.J. Lee, W.S. Shim, E.J. Yeo, S. Kim, and S.Y. Kim, A novel synthetic Piper amide derivative NED-180 inhibits hyperpigmentation by activating the PI3K and ERK pathways and by regulating Ca2+ influx via TRPM1 channels, Pigment Cell Melanoma Res. 29 (2016), pp. 81–91.
  • N.R. Gavva, R. Tamir, Y. Qu, L. Klionsky, T.J. Zhang, D. Immke, J. Wang, D. Zhu, T.W. Vanderah, F. Porreca, E.M. Doherty, M.H. Norman, J.D. Wild, A.W. Bannon, J.C. Louis, and J.J. Treanor, AMG 9810 [(E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)acrylamide], a novel vanilloid receptor 1 (TRPV1) antagonist with antihyperalgesic properties, J. Pharmacol. Exp. Ther. 313 (2005), pp. 474–484.
  • Y. Shen, M.A.F. Rampino, R.C. Carroll, and S. Nawy, G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer, Proc. Natl. Acad. Sci. USA 109 (2012), pp. 8752–8757.
  • C. Camacho, G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, J. Bealer, and T.L. Madden, BLAST+: Architecture and applications, BMC Bioinformatics 10 (2009), pp. 421–429.
  • S. Henikoff and J.C. Henikoff, Amino acid substitution matrices from protein blocks, Proc. Natl. Acad. Sci. USA 89 (1992), pp. 10915–10919.
  • J. Duan, Z. Li, J. Li, R.E. Hulse, A. Santa-Cruz, W.C. Valinsky, S.A. Abiria, G. Krapivinsky, J. Zhang, and D.E. Clapham, Structure of the mammalian TRPM7, a magnesium channel required during embryonic development, Proc. Natl. Acad. Sci. USA 115 (2018), E8201.
  • G. Yuan, C. Erhu, J. David, and C. Yifan, TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action, Nature 534 (2016), pp. 347–363.
  • A. Sali and T.L. Blundell, Comparative protein modelling by satisfaction of spatial restraints, J. Mol. Biol. 234 (1993), pp. 779–815.
  • Discovery Studio 2018, Dassault Systèmes, San Diego, CA, USA, 2018; software available at http://www.3dsbiovia.com.
  • R.A. Laskowski, M.W. Macarthur, D.S. Moss, and J.M. Thornton, PROCHECK: A program to check the stereochemical quality of protein structures, J. Appl. Crystallogr. 26 (1993), pp. 283–291.
  • S.C. Lovell, I.W. Davis, W.B. Arendall, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson, and D.C. Richardson, Structure validation by Cα geometry: ϕ,ψ and Cβ deviation, Proteins 50 (2003), pp. 437–450.
  • Schrödinger Release 2018-3: Glide 8.0, Schrödinger, LLC, New York, NY, USA, 2018; software available at https://www.schrodinger.com.
  • PyMOL 1.5, Schrödinger, LCC, NY, USA, 2012; software available at https://pymol.org.
  • Desmond Molecular Dynamics System 5.5, D. E. Shaw Research, New York, NY, USA, 2018; software available at http://www.deshawresearch.com.
  • M.A. Lomize, A.L. Lomize, I.D. Pogozheva, and H.I. Mosberg, OPM: Orientations of proteins in membranes database, Bioinformatics. 22 (2006), pp. 623–625.
  • W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983), pp. 926–935.
  • R.H. Byrd, P. Lu, J. Nocedal, and C.A. Zhu, Limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput. 16 (1995), pp. 1190–1208.
  • Forge 10, Cresset®, Litlington, Cambridgeshire, UK, 2018; software available at https://www.cresset-group.com.
  • J. Vinter, Extended electron distributions applied to the molecular mechanics of some intermolecular interactions, J. Comput. Aided Mol. Des. 8 (1994), pp. 653–668.
  • T. Cheeseright, M. Mackey, S. Rose, and A. Vinter, Molecular field extrema as descriptors of biological activity: Definition and validation, J. Chem. Inf. Model. 46 (2006), pp. 665–676.
  • E.C. David, TRP channels as cellular sensors, Nature 426 (2003), pp. 517–524.
  • L.H. Jiang, Subunit interaction in channel assembly and functional regulation of transient receptor potential melastatin (TRPM) channels, Biochem. Soc. Trans. 35 (2007), pp. 86–88.
  • M. Li, Y. Yu, and J. Yang, Structural Biology of TRP Channels, in Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, M.S. Islam, eds., Springer, Dordrecht, Netherlands, 2011, pp. 1–23.
  • N.R. Gavva, L. Klionsky, Y. Qu, L. Shi, R. Tamir, S. Edenson, T.J. Zhang, V.N. Viswanadhan, A. Toth, L.V. Pearce, T.W. Vanderah, F. Porreca, P.M. Blumberg, J. Lile, Y. Sun, K. Wild, J.C. Louis, and J.J. Treanor, Molecular determinants of vanilloid sensitivity in TRPV1, J. Biol. Chem. 279 (2004), pp. 20283–20295.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.