148
Views
1
CrossRef citations to date
0
Altmetric
Articles

Substituted naphthalene reaction rates with peroxy-acid treatment: prediction of reactivity using PEST

, , &
Pages 229-245 | Received 20 Dec 2018, Accepted 04 Feb 2019, Published online: 21 Mar 2019

References

  • K.-H. Kim, S.A. Jahan, E. Kabir, and R.J.C. Brown, A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects, Environ. Int. 60 (2013), pp. 71–80.
  • C.D. Simpson, W.R. Cullen, K.B. Quinlan, and K.J. Reimer, Methodology for the determination of priority pollutant polycyclic hydrocarbons in marine sediments, Chemosphere 31 (1995), pp. 4143–4155.
  • J.M. Neff, Polycyclic Aromatic Hydrocarbons in the Aquatic Environment. Sources, Fates and Biological Effects. Applied Science Publishers, London, 1979.
  • X. He, Y. Pang, X. Song, B. Chen, Z. Feng, and Y. Ma, Distribution, sources and ecological risk assessment of PAHs in surface sediments from Guan River Estuary, China, Mar. Pollut. Bull. 80 (2014), pp. 52–58.
  • L. Flowers, S.H. Rieth, V.J. Cogliano, G.L. Foureman, R. Hettzberg, E.L. Hofmann, D.L. Murphy, S. Nesnow, and R.S. Schoeny, Health assessment of polycyclic aromatic hydrocarbon mixtures: Current practices and future directions, Polycyclic Aromat. Compd. 22 (2002), pp. 811–821.
  • P. Vasseur, M. Bonnard, F. Palais, I.C. Eom, and J.L. More, Bioavailability of chemical pollutants in contaminated soils and pitfalls of chemical analysis in hazard assessment, Environ. Toxicol. 23 (2008), pp. 652–656.
  • C. Jia and S. Batterman, A critical review of naphthalene sources and exposures relevant to indoor and outdoor air, Int. J. Environ. Res. Public Health. 7 (2010), pp. 2903–2939.
  • M.J. Focazio, D.W. Kolpin, K.K. Barnes, E.T. Furlong, M.T. Meyer, S.D. Zaugg, L.B. Barber, and M.E. Thurman, A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States – II) Untreated drinking water sources, Sci. Total Environ. 402 (2008), pp. 201–216.
  • G.C. Pratt, C. Herbrandson, M.J. Krause, C. Schmitt, C.J. Lippert, C.R. McMahon, and K.M. Ellickson, Measurements of gas and particle polycyclic aromatic hydrocarbons (PAHs) in air at urban, rural and near-roadway sites, Atmos. Environ. 179 (2018), pp. 268–278.
  • D.W. Kolpin, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: A national reconnaissance, Environ. Sci. Technol. 36 (2002), pp. 1202–1211.
  • D.W. Kolpin, M. Skopec, M.T. Meyer, E.T. Furlong, and S.D. Zaugg, Urban contribution of pharmaceuticals and other organic wastewater contaminants to streams during differing flow conditions, Sci. Total Environ. 328 (2004), pp. 119–130.
  • J.J. Liu, X.C. Wang, and B. Fan, Characteristics of PAH adsorption on inorganic particles and activated sludge in domestic wastewater treatment, Bioresour. Technol. (2011), pp. 5305–5311.
  • Ö. Gustafsson, F. Haghseta, C. Chan, J. MacFarlane, and P.M. Gschwend, Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailablility, Environ. Sci. Technol. 31 (1997), pp. 203–209.
  • Y.G. Ma, Y.D. Lei, H. Xiao, F. Wania, and W.H. Wang, Critical review and recommended values for the physical-chemical property data of 15 polycyclic aromatic hydrocarbons at 25 °C, J. Chem. Eng. Data. 55 (2010), pp. 819–825.
  • J.M. Shoulder, Hydrophobic organic compounds reaction rates with peroxy-acid treatment in engineered systems: Prediction of reactivity using molecular modeling and PEST, Ph.D. diss., Rensselaer Polytechnic Institute, 2012.
  • S. Kuppusamy, P. Thavamani, K. Venkateswarlu, Y.B. Lee, R. Naidu, and M. Megharaj, Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils: Technological constraints, emerging trends and future directions, Chemosphere 168 (2017), pp. 944–968.
  • R.F. Hertel, G. Rosner, J. Kielhorn, E. Menichini, P.L. Grover, and J. Blok, International Programme on Chemical Safety Environmental Health Criteria 202. Selected non-heterocyclic polycyclic aromatic hydrocarbons. United Nations Environment Programme, International Labour Organization, World Health Organization: Geneva, Switzerland, (1998). Available at http://www.inchem.org/documents/ehc/ehc/ehc202.htm
  • R.J. Watts and A.L. Teel, Chemistry of modified Fenton’s reagent (catalyzed H2O2 propagations-CHP) for in situ soil and groundwater remediation, J. Environ. Eng. 131 (2005), pp. 612–622.
  • C. Comninellis, A. Kapalka, S. Malato, S.A. Parsons, I. Poulios, and D. Mantzavinos, Advanced oxidation processes for water treatment: Advances and trends for R&D, J. Chem. Technol. Biotechnol. 83 (2008), pp. 769–776.
  • E. Ferrarese, G. Andreottola, and I.A. Oprea, Remediation of PAH-contaminated sediments by chemical oxidation, J. Hazard. Mater. 152 (2008), pp. 128–139.
  • R.J. Watts, P.C. Stanton, J. Howsawkeng, and A.L. Teel, Mineralization of a sorbed polycyclic hydrocarbon in two soils using catalyzed hydrogen peroxide, Water Res. 36 (2002), pp. 4283–4292.
  • A.L. N’Guessan, T. Carignan, and M.C. Nyman, Optimization of the peroxy-acid treatment of α-methylnaphthlene and benzo[a]pyrene in sandy and silty-clay sediments, Environ. Sci. Technol. 38 (2004), pp. 1554–1560.
  • N.S. Alderman, A.L. N’Guessan, and M.C. Nyman, Effective treatment of PAH contaminated Superfund site soil with the peroxy-acid process, J. Hazard. Mater. 146 (2007), pp. 652–660.
  • A.L. N’Guessan, N.S. Alderman, K. O’Connor, A. Abdul Rahim, and M.C. Nyman, Peroxy-acid treatment of selected PAHs in sediments, Int. J. Environ. Waste Manage. 1 (2006), pp. 61–74.
  • P.R. Gogate and A.B. Pandit, A review of imperative technologies for wastewater treatment I: Oxidation technologies at ambient conditions, Adv. Environ. Res. 8 (2004), pp. 501–551.
  • P. Cañizares, R. Paz, C. Sáez, and A. Rodrigo, Electrochemical oxidation of wastewaters polluted with aromatic and heterocyclic compounds, J. Electrochem. Soc. 154 (2007), pp. E165–E171.
  • X.Y. Li, Y.H. Cui, Y.J. Feng, Z.M. Xie, and J.D. Gu, Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes, Water Res. 39 (2005), pp. 1972–1981.
  • E.S. Lee, Y. Seol, Y.C. Fang, and F.W. Schwartz, Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene, Environ. Sci. Technol. 37 (2003), pp. 2540–2546.
  • R.H. Waldemer and P.G. Tratnyek, Kinetics of contaminant degradation by permanganate, Environ. Sci. Technol. 40 (2006), pp. 1055–1061.
  • Y.E. Yan and F.W. Schwartz, Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate, J. Contam. Hydrol. 37 (1999), pp. 343–365.
  • X. Guan, D. He, J. Ma, and G. Chen, Application of permanganate in the oxidation of micropollutants: A mini review, Front. Environ. Sci. Eng. China, 4 (2010), pp. 405–413.
  • N.S. Alderman, The peroxy-acid treatment process: An investigation of process mechanics, Ph.D. diss., Rensselaer Polytechnic Institute, 2009.
  • N.S. Alderman and M.C. Nyman, Peroxy-Acid Process: Mechanistic Studies, J. Environ. Sci. Health, Part A: Toxic/Hazardous Subst. Environ. Eng. 44 (2009), pp. 1077–1087.
  • R.D. Bach, C. Canepa, J.E. Winter, and P.E. Blanchette, Mechanism of acid-catalyzed epoxidation of alkenes with peroxy acids, J. Org. Chem. 62 (1997), pp. 5191–5197.
  • X. Zhao, K. Cheng, J. Hao, and D. Liu, Preparation of peracetic acid from hydrogen peroxide, part II: Kinetics for spontaneous decomposition of peracetic acid in the liquid phase, J. Mol. Catal. A: Chem. 284 (2008), pp. 58–68.
  • X. Zhao, T. Zhang, Y. Zhou, and D. Liu, Preparation of peracetic acid from hydrogen peroxide, part I: Kinetics for peracetic acid synthesis and hydrolysis, J. Mol. Catal. A: Chem. 271 (2007), pp. 246–252.
  • J.M. Shoulder, N.S. Alderman, C.M. Breneman, and M.C. Nyman, Polycyclic aromatic hydrocarbon reaction rates with peroxy-acid treatment: Prediction of reactivity using local ionization potential, SAR QSAR Environ. Res. 24 (2013), pp. 611–624.
  • F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons Ltd. New York, 1999.
  • PHYSPROP. SRC, Inc.; software available at https://www.srcinc.com/what-we-do/environmental/scientific-databases.html.
  • F.A. Bulat, A. Toro-Labbé, T. Brinck, J.S. Murray, and P. Politzer, Quantitative analysis of molecular surfaces: Areas, volumes, electrostatic potentials and average local ionization energies, J. Mol. Model. 16 (2010), pp. 1679–1691.
  • P. Politzer, F. Abu-Awwad, and J.S. Murray, Comparison of density functional and Hartree-Fock average local ionization energies on molecular surfaces, Int. J. Quantum Chem. 69 (1998), pp. 607-613..
  • P. Politzer, J.S. Murray, M.C. Concha, The complementary roles of molecular surface electrostatic potential and average local ionization energies with respect to electrophilic processes, Int. J. Quantum Chem. 88 (2002), pp. 19-27.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford, CT, 2004.
  • Molecular Operating Environment, version 2009.10; Chemical Computing Group Inc, Montreal, QC, 2009.
  • Rensselaer Exploratory Center for Cheminformatics Research (RECCR) Online Modelling System, accessed on January 28, 2019, http://reccr.chem.rpi.edu/Software/modeling/
  • C.M. Breneman, C.M. Sundling, N. Sukumar, L. Shen, W.P. Katt, and M.J. Embrechts, New developments in PEST shape/property hybrid descriptors, J. Comput.-aided Mol. Des. 17 (2003), pp. 231–240.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.