257
Views
14
CrossRef citations to date
0
Altmetric
Articles

QSAR modelling on a series of arylsulfonamide-based hydroxamates as potent MMP-2 inhibitors

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 247-263 | Received 11 Dec 2018, Accepted 25 Feb 2019, Published online: 23 Apr 2019

References

  • R.P. Iyer, N.L. Patterson, G.B. Fields, and M. Lindsey, The history of matrix metalloproteinases: Milestones, myths, and misperceptions, Am. J. Physiol. Heart Circ. Physiol. 303 (2012), pp. H919–H930.
  • X.S. Puente, L.M. Sanchez, C.M. Overall, and C. Lopez-Otin, Human and mouse proteases: A comparative genomic approach, Nat. Rev. Gen. 4 (2003), pp. 544–558.
  • C. Frantz, M. Kathleen, I. Stewart, and M. Valerie, Weaver, the extracellular matrix at a glance, J. Cell Sci. 123 (2010), pp. 4195–4200.
  • S.A. Amin, N. Adhikari, and T. Jha, Is dual inhibition of metalloenzymes HDAC-8 and MMP-2 a potential pharmacological target to combat hematological malignancies? Pharmacol. Res. 122 (2017), pp. 8–19.
  • E. Nuti, F. Casalini, S. Santamaria, P. Gabelloni, S. Bendinelli, E. Da Pozzo, B. Costa, L. Marinelli, V. La Pietra, E. Novellino, M.M. Bernardo, R. Fridman, F. Da Settim, C. Martini, and A. Rossello, Synthesis and biological evaluation in U87MG glioma cells of (ethynylthiophene)sulfonamido-based hydroxamates as matrix metalloproteinase inhibitors, Eur. J. Med. Chem. 46 (2011), pp. 2617–2629.
  • B. Fabre, K. Filipiak, J.M. Zapico, N. Díaz, R.J. Carbajo, A.K. Schott, M.P. Martínez-Alcázar, D. Suárez, A. Pineda-Lucena, A. Ramos, and B. de Pascual-Teresa, Progress towards water-soluble triazolebased selective MMP-2 inhibitors, Org. Biomol. Chem. 11 (2013), pp. 6623–6641.
  • E. Nuti, A.R. Cantelmo, C. Gallo, A. Bruno, B. Bassani, C. Camodeca, T. Tuccinardi, L. Vera, E. Orlandini, S. Nencetti, E.A. Stura, A. Martinelli, V. Dive, A. Albini, and A. Rossello, N-O-isopropyl sulpfonamido- based hydroxamates as matrix metalloproteinase inhibors: Hit selection and in vivo antiangiogenic activity, J. Med. Chem. 58 (2015), pp. 7224–7240.
  • J. Zhang, X. Li, Y. Jiang, J. Feng, X. Li, Y. Zhang, and W. Xu, Design, synthesis and preliminaryevaluation of α-sulfonyl γ-(glycinyl-amino)proline peptidomimetics as matrix metalloproteinase inhibitors, Bioorg. Med. Chem. 22 (2014), pp. 3055–3064.
  • A.K. Halder, S. Mallick, D. Shikha, A. Saha, K. D. Saha, and T. Jha, Design of dual MMP-2/HDAC-8 inhibitors by pharmacophore mapping, molecular docking, synthesis and biological activity, RSC Adv. 5 (2015), pp. 72373–72386.
  • I.H. Park and M.M Kim, Spermidine inhibits MMP-2 via modulation of histone acetyltransferase and histone deacetylase in HDFs, Int. J. Bio. Macromol. 51 (2012), pp. 1003–1007.
  • C. Tallant, A. Marrero, and F.X. Gomis-Rüth, Matrix metalloproteinases: Fold and function of their catalytic domains, Biochim. Biophys. Acta 1803 (2010), pp. 20–28.
  • A. Scozzafava and C.T. Supuran, Carbonic anhydrase and matrix metalloproteinase inhibitors: Sulfonylated amino acid hydroxamates with MMP inhibitory properties act as efficient inhibitors of CA isozymes I, II, and IV, and N-hydroxysulfonamides inhibit both these zinc enzymes, J. Med. Chem. 43 (1997), pp. 3677–3687.
  • N. Adhikari, A. Mukherjee, A. Saha, and T. Jha, Arylsulfonamides and selectivity of matrix metalloproteinase-2: An overview, Eur. J. Med. Chem. (2017), pp. 72–109.
  • I. Bertini, M. Fragai, A. Giachetti, C. Luchinat, M. Maletta, G. Parigi, and K.J. Yeo, Combining in silico tools and NMR data to validate protein-ligand structural models: Application to matrix metalloproteinases, J. Med. Chem. 48 (2005), pp. 7544–7559.
  • M. Aschi, N. Besker, N. Re, G.Pochetti, C. Coletti, C. Gallin, and F. Mazza, Stereoselectivity by enantiomeric inhibitors of matrix metalloproteinase-8: New insights from molecular dynamics simulations, J. Med. Chem. 50 (2007), pp. 211–218.
  • B.G. Rao, Recent developments in the design of specific matrix metalloproteinase inhibitors aided by structural and computational studies, Curr. Pharm. Des. 11 (2005), pp. 295–322.
  • A. Adhikari, S.A. Amin, A. Saha, and T. Jha, Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs, J. Mol. Struct. 1156 (2017), pp. 501–515.
  • R.J. Turner and F.R. Sharp, Implications of MMP-9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke, Front. Cell Neurosci. 10 (2016), p. 56.
  • D. Kumar and S.P. Gupta, A quantitative structure–activity relationship study on some matrix metalloproteinase and collagenase inhibitors, Bioorg. Med. Chem. 11 (2002), pp. 421–426.
  • S.P. Gupta, D. Kumar, and S. Kumaran, A quantitative structure–activity relationship study of hydroxamate matrix metalloproteinase inhibitors derived from funtionalized 4-aminoprolines, Bioorg. Med. Chem. 11 (2003), pp. 1975–1981.
  • A.K. Halder, A. Saha, and T. Jha, Exploring QSAR and pharmacophore mapping of structurally diverse selective matrix metalloproteinase-2 inhibitors, J. Pharm. and Pharmacol. 65 (2013), pp. 1541–1554.
  • N. Adhikari, A.K. Halder, S. Mallick, A. Saha, K.D. Saha, and T. Jha, Robust design of some selective matrix metalloproteinase-2 inhibitors over matrix metalloproteinase-9 through in silico/fragment-based lead identification and de novo lead modification: Syntheses and biological assays, Bioorg. Med. Chem. 24 (2016), pp. 4291–4309.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Exploring in house glutamate inhibitors of matrix metalloproteinase-2 through validated robust chemico-biological quantitative approaches, Struct. Chem. 29 (2018), pp. 285–297.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Understanding chemico-biological interactions of glutamate MMP-2 inhibitors through rigorous alignment-dependent 3D-QSAR analyses, Chem. Select. 2 (2017), pp. 7888–7898.
  • N. Adhikari, S.A. Amin, A. Saha, and T. Jha, Structural exploration for the refinement of anticancer matrix metalloproteinase-2 inhibitor designing approaches through robust validated multi-QSARs, J. Mol. Struct. 1156 (2018), pp. 501–515.
  • T. Jha, N. Adhikari, A. Saha, and S.A. Amin, Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors, SAR QSAR Environ. Res. 29 (2018), pp. 43–68.
  • A. Rossello, E. Nuti, E. Orlandini, P. Carelli, S. Rapposelli, M. Macchia, F. Minutolo, L. Carbonaro, A. Albini, R. Benelli, G. Cercignani, G. Murphy, and A. Balsamo, New N-arylsulfonyl-nalkoxyaminoacetohydroxamic acids as selective inhibitors of gelatinase A (MMP-2), Bioorg. Med. Chem. Lett. 12 (2004), pp. 2441–2450.
  • E. Nuti, E. Orladini, N. Susanna, A. Rossello, A. Innocenti, A. Scozzafava, and C. Supuran, Carbonic anhydrase and matrix metalloproteinase inhibitors. Inhibition of human tumor associated isozymes IX and cytosolic isozyme I and II with sulfonylatedhydroxamates, Bioorg. Med. Chem. 15 (2007), pp. 2298–2311.
  • E. Nuti, F. Casalini, S.I. Avramova, S. Santamaria, G. Cercignani, L. Marinelli, V. La Pietra, E. Novellino, E. Orlandini, S. Nencetti, T. Tuccinardi, A. Martinelli, N. Lim, R. Visse, H. Nagase, and A. Rossello, N-O-isopropyl sulfonamido- based hydroxamates: Design, synthesis and biological evaluation of selective matrix metalloproteinase-13 as potential therapeutic agents for osteoarthritis, J. Med. Chem. 52 (2009), pp. 4757–4773.
  • E. Nuti, F. Casalini, S. Santamaria, M. Fabbi, G. Carbotti, S.Ferrini, and A. Rosello. Selective arylsulfonamide inhibitors of ADAM-17: Hit optimization and activity in ovarian cancer cell models, J. Med. Chem. 56 (2013), pp. 8089–8103.
  • S. Sjøli, E. Nuti, E. Camodeca, I. Bilto, A. Rossello, J.O. Winberg, and O.A. Adekoya, Synthesis, experimental evaluation and molecular modelling of hydroxamate derivatives as zinc metalloproteinase inhibitors, Eur. J. Med. Chem. 108 (2016), pp. 141–153.
  • C.W. Yap, PaDEL-Descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474.
  • S.A. Amin, N. Adhikari, S. Gayen, and T. Jha, Insight into the structural requirements of theophylline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors through multi-QSAR modelling and molecular docking approaches, Curr. Drug. Des. Technol. 13 (2016), pp. 84–100.
  • S.A. Amin, N. Adhikari, S. Gayen, and T. Jha, First report on the structural exploration and prediction of new BPTES analogs as glutaminase inhibitors, J. Mol. Struct. 1143 (2017), pp. 49–64.
  • QSAR tools, DTC laboratory, India, 2015; Software available at https://dtclab.webs.com/software-tools. (accessed on 22nd September 2018).
  • P. Ambure, R.B. Aher, A. Gajewicz, T. Puzyn, and K. Roy, “NanoBRIDGES” software: Open access tools to perform QSAR and nano-QSAR modeling, Chemom. Intell. Lab. Syst. 147 (2015), pp. 1–13.
  • Organisation for Economic Co-operation and Development, Principles for the validation, for regulatory purposes, of (quantitative) structure-activity relationship models. Available at https://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf.
  • K. Roy, S. Kar, and R.N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Academic Press, London, UK, 2015.
  • A. Golbraikh and A. Tropsha, Predictive QSAR modelling based on diversity sampling of experimental datasets for the training and test set selection, J. Comput. Aided Mol. Des. 16 (2002), pp. 357–369.
  • P.A.P. Moran, Notes on continuous stochastic phenomena, Biometrika 37 (1950), pp. 17–23.
  • R. Todechini and V. Consonni, Molecular Descriptors for Chemoinformatics, Vol.1, Wiley-VCH, Weiheim, Germany, 2009.
  • R.C. Geary, The contiguity ratio and statistical mapping, Incorp. Stat. 5 (1954), pp. 115–145.
  • G. Moreau and P. Broto, Autocorrelation of molecular structures. Application to SAR studies, Nouv. J. Chim. 4 (1980), pp. 757–764.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.