276
Views
11
CrossRef citations to date
0
Altmetric
Articles

Conformal prediction of HDAC inhibitors

, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 265-277 | Received 16 Jan 2019, Accepted 04 Mar 2019, Published online: 23 Apr 2019

References

  • M. Mottamal, S. Zheng, T.L. Huang, and G. Wang, Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents, Molecules 20 (2015), pp. 3898–3941.
  • R. Sangwana, R. Rajana, and P.K. Mandal, HDAC as onco target: Reviewing the synthetic approaches with SAR study of their inhibitors, Eur. J. Med. Chem. 158 (2018), pp. 620–706.
  • H. Tang, X.S. Wang, X.-P. Huang, B.L. Roth, K.V. Butler, A.P. Kozikowski, M. Jung, and A. Tropsha, Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation, J. Chem. Inf. Model. 49 (2009), pp. 461–476.
  • H. Pham-The, G. Casañola-Martin, K. Diéguez-Santana, N. Nguyen-Hai, N.T. Ngoc, L. Vu-Duc, and H. Le-Thi-Thu, Quantitative structure–activity relationship analysis and virtual screening studies for identifying HDAC2 inhibitors from known HDAC bioactive chemical libraries, SAR QSAR Environ. Res. 28 (2017), pp. 199–220.
  • M. Manal, K. Manish, D. Sanal, A. Selvaraj, V. Devadasan, and M.J.N. Chandrasekar, Novel HDAC8 inhibitors: A multi-computational approach, SAR QSAR Environ. Res. 28 (2017), pp. 707–733.
  • S. Sinha, C. Tyagi, S. Goyal, S. Jamal, P. Somvanshi, and A. Grover, Fragment based G-QSAR and molecular dynamics based mechanistic simulations into hydroxamic-based HDAC inhibitors against spinocerebellar ataxia, J. Biomol. Struct. Dyn. 34 (2016), pp. 2281–2295.
  • S. Sinha, S. Goyal, P. Somvanshi, and A. Grover, Mechanistic insights into the binding of class IIa HDAC inhibitors toward spinocerebellar ataxia type-2: A 3D-QSAR and pharmacophore modeling approach, Front. Neurosci. 10 (2017), pp. 606.
  • Z. Noor, N. Afzal, and S. Rashid, Exploration of novel inhibitors for class I histone deacetylase isoforms by QSAR modeling and molecular dynamics simulation assays, PLoS ONE 10 (2015), pp. e0139588.
  • M.M. Abdel-Atty, N.A. Farag, S.E. Kassab, R.A.T. Serya, and K.A.M. Abouzid, Design, synthesis, 3D pharmacophore, QSAR, and docking studies of carboxylic acid derivatives as histone deacetylase inhibitors and cytotoxic agents, Bioorg. Chem. 57 (2014), pp. 65–82.
  • R. Ragno, S. Simeoni, S. Valente, S. Massa, and A. Mai, 3-D QSAR studies on histone deacetylase inhibitors. A GOLPE/GRID approach on different series of compounds, J. Chem. Inf. Model. 46 (2006), pp. 1420–1430.
  • J.J. Naveja and J.L. Medina-Franco, Insights from pharmacological similarity of epigenetic targets in epipolypharmacology, Drug Discov. Today 23 (2018), pp. 141–150.
  • A. Gaulton, A. Hersey, M. Nowotka, A.P. Bento, J. Chambers, D. Mendez, P. Mutowo, F. Atkinson, L.J. Bellis, E. Cibrián-Uhalte, M. Davies, N. Dedman, A. Karlsson, M.P. Magariños, J.P. Overington, G. Papadatos, I. Smit, and A.R. Leach, The ChEMBL database in 2017, Nucleic Acids Res. 45 (2017), pp. D945–D954.
  • D.S. Wishart, C. Knox, A.C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and J. Woolsey, DrugBank: A comprehensive resource for in silico drug discovery and exploration, Nucleic Acids Res. 34 (2006), pp. D668–D672.
  • B.L. Roth, E. Lopez, S. Patel, and W.K. Kroeze, The multiplicity of serotonin receptors: Uselessly diverse molecules or an embarrassment of riches? Neuroscientist 6 (2000), pp. 252–262.
  • Z. Feng, L. Chen, H. Maddula, O. Akcan, R. Oughtred, H.M. Berman, and J. Westbrook, Ligand Depot: A data warehouse for ligands bound to macromolecules, Bioinformatics 20 (2004), pp. 2153–2155.
  • M.K. Gilson, T. Liu, M. Baitaluk, G. Nicola, L. Hwang, and J. Chong, BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology, Nucleic Acids Res. 44 (2016), pp. D1045–D1053.
  • D. Wishart, D. Arndt, A. Pon, T. Sajed, A.C. Guo, Y. Djoumbou, C. Knox, M. Wilson, Y. Liang, J. Grant, Y. Liu, S.A. Goldansaz, and S.M. Rappaport, T3DB: The toxic exposome database, Nucleic Acids Res. 43 (2015), pp. D928–D934.
  • F. Zhu, Z. Shi, C. Qin, L. Tao, X. Liu, F. Xu, L. Zhang, Y. Song, X. Liu, J. Zhang, B. Han, P. Zhang, and Y. Chen, Therapeutic target database update 2012: A resource for facilitating target-oriented drug discovery, Nucleic Acids Res. 40 (2012), pp. D1128–D1136.
  • EBI standardizer. Francis Atkinson, version 0.1.9, EBI.  Software available at https://pypi.python.org/pypi/standardiser, https://wwwdev.ebi.ac.uk/chembl/extra/francis/standardiser/.
  • MolVS (2014). Matt Swain, version 0.0.3. Software available at https://pypi.python.org/pypi/MolVS.
  • RDKit, Open-Source Cheminformatics. Greg Landrum, version 2016_03_1.  Software available at http://www.rdkit.org.
  • V. Vovk, A. Gammerman, and G. Shafer, Algorithmic Learning In A Random World, Springer, New York, 2005.
  • U. Norinder, L. Carlsson, S. Boyer, and M. Eklund, Introducing conformal prediction in predictive modeling. A transparent and flexible alternative to applicability domain determination. J. Chem. Inf. Model. 54 (2014), pp. 1596−1603.
  • U. Norinder, G. Myatt, and E. Ahlberg, Predicting aromatic amine mutagenicity with confidence: A case study using conformal prediction, Biomolecules 8 (2018), pp. 85.
  • G. Shafer and V. Vovk, A tutorial on conformal prediction, J. Mach. Learn. Res. 9 (2008), pp. 371–421.
  • L. Carlsson, M. Eklund, and U. Norinder, Aggregated conformal prediction, in Artificial Intelligence Applications and Innovations, IFIP Advances in Information and Communication Technology, L. Iliadis, I. Maglogiannis, H. Papadopoulos, S. Sioutas, and C. Makris C, eds., Springer, Berlin Heidelberg, (2014), pp. 231–240.
  • F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, Scikit-learn: Machine learning in Python, J. Mach. Learn. Res. 12 (2011), pp. 2825–2830.
  • Nonconformist package 1.2.5. Henrik Linusson, version 1.2.5.  Software available at https://github.com/donlnz/nonconformist.
  • L. Breiman, Random forests, Machine Learn. 45 (2001), pp. 5–32.
  • E. Pontiki and D. Hadjipavlou-Litina, Histone deacetylase inhibitors (HDACIs). Structure–activity relationships: History and new QSAR perspectives, Med. Res. Rev. 32 (2012), pp. 1–165.
  • X.H. Liu, H.Y. Song, J.X. Zhang, B.C. Han, X.N. Wei, X.H. Ma, W.K. Cui, and Y.Z. Chen, Identifying novel type ZBGs and nonhydroxamate HDAC inhibitors through a SVM based virtual screening approach, Mol. Inf. 29 (2010), pp. 407–420.
  • L. Zhao, Y. Xiang, J. Song, and Z. Zhang, A novel two-step QSAR modeling work flow to predict selectivity and activity of HDAC inhibitors, Bioorg. Med. Chem. Lett. 23 (2013), pp. 929–933.
  • J. Shi, G. Zhao, and Y. Wei, Computational QSAR model combined molecular descriptors and fingerprints to predict HDAC1 inhibitors, Med. Sci. (Paris) 34 (2018), pp. 52–58.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.