199
Views
15
CrossRef citations to date
0
Altmetric
Articles

A simple approach for assessment of toxicity of nitroaromatic compounds without using complex descriptors and computer codes

&
Pages 347-361 | Received 02 Jan 2019, Accepted 11 Mar 2019, Published online: 25 Apr 2019

References

  • J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley-VCH, Cornwall, UK, 2010.
  • M.H. Keshavarz and T.M. Klapötke, Energetic Compounds: Methods for Prediction of their Performance, Walter de Gruyter GmbH & Co KG, Berlin/Boston, 2017.
  • M.H. Keshavarz and T.M. Klapötke, The Properties of Energetic Materials: Sensitivity, Physical and Thermodynamic Properties, Walter de Gruyter GmbH & Co KG, Berlin/Boston, 2017.
  • M.H. Keshavarz, T.M. Klapötke, and M. Sućeska, Energetic materials designing bench (EMDB), Version 1.0, Propel. Explos. Pyrotech. 42 (2017), pp. 854–856.
  • T.M. Klapötke, Chemistry of High-Energy Materials, 4th ed., Walter de Gruyter GmbH & Co KG, Germany, 2017.
  • T.M. Klapötke, Energetic Materials Encyclopedia, Walter de Gruyter GmbH & Co KG, Berlin/Boston, 2018.
  • S. Zeman and M. Jungová, Sensitivity and performance of energetic materials, Propel. Explos. Pyrotech. 41 (2016), pp. 426–451.
  • M.H. Keshavarz, Combustible Organic Materials: Determination and Prediction of Combustion Properties, Walter de Gruyter GmbH & Co KG, Berlin/Boston, 2018.
  • D.E. Rickert, Toxicity of Nitroaromatic Compounds, Hemisphere Publishing Corporation, Washington, 1985.
  • N. Čėnas, A. Nemeikaitė-Čėnienė, E. Sergedienė, H. Nivinskas, Ž. Anusevičius, and J. Šarlauskas, Quantitative structure–activity relationships in enzymatic single-electron reduction of nitroaromatic explosives: Implications for their cytotoxicity, BBA-General Subjects. 1528 (2001), pp. 31–38.
  • H. Schmitt, R. Altenburger, B. Jastorff, and G. Schüürmann, Quantitative structure−activity analysis of the algae toxicity of nitroaromatic compounds, Chem. Res. Toxicol. 13 (2000), pp. 441–450.
  • S.S. Talmage, D.M. Opresko, C.J. Maxwell, C.J.E. Welsh, F.M. Cretella, P.H. Reno, and F.B. Daniel, Nitroaromatic munition compounds: Environmental effects and screening values, Rev. Environ. Contam. Toxicol. 161(1999), pp. 1–156.
  • X. Wang, Z. Lin, D. Yin, S. Liu, and L. Wang, 2D/3D-QSAR comparative study on mutagenicity of nitroaromatics, Sci. China, Ser. B, Chem. 48 (2005), pp. 246–252.
  • O. Mekenyan, D.W. Roberts, and W. Karcher, Molecular orbital parameters as predictors of skin sensitization potential of halo-and pseudohalobenzenes acting as SNAr electrophiles, Chem. Res. Toxicol. 10 (1997), pp. 994–1000.
  • B. Bukowska and S. Kowalska, The presence and toxicity of phenol derivatives-their effect on human erythrocytes, Curr. Top. Biophys. 27 (2003), pp. 43–51.
  • W.P. Cunningham, B.W. Saigo, and M.A. Cunningham, Environmental Science: A Global Concern Vol. 412, McGraw-Hill, Boston, MA, 2001.
  • G. Hakimelahi and G. Khodarahmi, The identification of toxicophores for the prediction of mutagenicity, hepatotoxicity and cardiotoxicity, J. Iran. Chem. Soc. 2 (2005), pp. 244–267.
  • M.H. Keshavarz and H.R. Pouretedal, Simple and reliable prediction of toxicological activities of benzoic acid derivatives without using any experimental data or computer codes, Med. Chem. Res. 22 (2013), pp. 1238–1257.
  • M.H. Keshavarz, F. Gharagheizi, A. Shokrolahi, A. Shokrolahi, and S. Zakinejad, Accurate prediction of the toxicity of benzoic acid compounds in mice via oral without using any computer codes, J. Hazard. Mater. 237 (2012), pp. 79–101.
  • H.R. Pouretedal, M.H. Keshavarz, and A. Abbasi, A new approach for accurate prediction of toxicity of amino compounds, J. Iran. Chem. Soc. 12 (2015), pp. 487–502.
  • R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan1, C.P. Varghese1, and R.K. Agrawal, Validation of QSAR models-strategies and importance, Int. J. Drug Des. Disc. 3 (2011), pp. 511–519.
  • A. Gooch, N. Sizochenko, B. Rasulev, L. Gorb, and J. Leszczynski, In vivo toxicity of nitroaromatics: A comprehensive quantitative structure–activity relationship study, Environ. Toxicol. Chem. 36 (2017), pp. 2227–2233.
  • O. Isayev, B. Rasulev, L. Gorb, and J. Leszczynski, Structure-toxicity relationships of nitroaromatic compounds, Molec. Divers. 10 (2006), pp. 233–245.
  • C. Selassie and R.P. Verma, History of quantitative structure–activity relationships, Burger’s Medicinal Chemistry and Drug Discovery, Sixth Edition, Volume 1: Drug Discovery, Edited by Donald J. Abraham,  John Wiley & Sons, Inc., New York, 2003, pp. 1–96.
  • V.E. Kuz’min, E.N. Muratov, A.G. Artemenko, M. Qasim, and J. Leszczynski, The effect of nitroaromatics’ composition on their toxicity in vivo: Novel, efficient non-additive 1D QSAR analysis, Chemosphere 72 (2008), pp. 1373–1380.
  • M. Cronin, B. Gregory, and T. Schultz, Quantitative structure−activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis, Chem. Res. Toxicol. 11 (1998), pp. 902–908.
  • V.E. Kuz’min, E.N. Muratov, A.G. Artemenko, L. Gorb, M. Qasim, and J. Leszczynski, The effects of characteristics of substituents on toxicity of the nitroaromatics: HiT QSAR study, J. Comput.-aided Molec. Des. 22 (2008), pp. 747.
  • X.F. Yan, H.M. Xiao, X.D. Gong, and X.H. Ju, Quantitative structure–activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus), Chemosphere 59 (2005), pp. 467–471.
  • L. Su, X. Zhang, X. Yuan, Y. Zhao, D. Zhang, and W. Qin, Evaluation of joint toxicity of nitroaromatic compounds and copper to Photobacterium phosphoreum and QSAR analysis, J. Hazard. Mater. 241 (2012), pp. 450–455.
  • H.R. Pouretedal and M.H. Keshavarz, Prediction of toxicity of nitroaromatic compounds through their molecular structures, J. Iran. Chem. Soc. 8 (2011), pp. 78–89.
  • A.G. Artemenko, E.N. Muratov, V.E. Kuz’min, N.N. Muratov, E.V. Varlamova, A.V. Kuz‘mina, L.G. Gorb, A. Golius, F.C. Hill, J. Leszczynski, and A. Tropsha, QSAR analysis of the toxicity of nitroaromatics in Tetrahymena pyriformis: Structural factors and possible modes of action, SAR QSAR Environ. Res. 22 (2011), pp. 575–601.
  • X.F. Yan, H.M. Xiao, X.D. Gong, and X.H. Ju, A comparison of semiempirical and first principle methods for establishing toxicological QSARs of nitroaromatics, J. Molec. Struc. THEOCHEM. 764 (2006), pp. 141–148.
  • K. Roy and P.L.A. Popelier, Exploring predictive QSAR models using quantum topological molecular similarity (QTMS) descriptors for toxicity of nitroaromatics to Saccharomyces cerevisiae, QSAR Comb. Sci. 27 (2008), pp. 1006–1012.
  • V. Agrawal and P. Khadikar, QSAR prediction of toxicity of nitrobenzenes, Bioorg. Med. Chem. 9 (2001), pp. 3035–3040.
  • A. Niazi, S. Jameh-Bozorghi, and D. Nori-Shargh, Prediction of toxicity of nitrobenzenes using ab initio and least squares support vector machines, J. Hazard. Mater. 151 (2008), pp. 603–609.
  • TOXNET-ChemIDplus USNLoM, 2018; software available at: https://chem.nlm.nih.gov/chemidplus/chemidlite.jsp.
  • Kode SRI. Dragon (Software for Molecular Descriptor Calculation) version 7.0, 2017; software available at: http://chm.kode-solutions.net.
  • A.A. Toropov, B.F. Rasulev, and J. Leszczynski, QSAR modeling of acute toxicity for nitrobenzene derivatives towards rats: Comparative analysis by MLRA and optimal descriptors, QSAR Comb. Sci. 26 (2007), pp. 686–693.
  • W.J. Palm, Introduction to MATLAB 7 for Engineers. McGraw-Hill, New York, 2005.
  • C. Nantasenamat, C. Isarankura-Na-Ayudhya, and V. Prachayasittikul, Advances in computational methods to predict the biological activity of compounds, Expert. Opin. Drug Disc. 5 (2010), pp. 633–654.
  • K. Ulm, Screening results on the toxicity of numerous fluoro organic compounds, J. Fluorine Chem. 21 (1982), p. 69.
  • A.R. Leach and V.J. Gillet, An Introduction to Chemoinformatics, Springer, The Netherlands, 2007.
  • P. Gramatica and A. Sangion, A historical excursus on the statistical validation parameters for QSAR models: A clarification concerning metrics and terminology, J. Chem. Info. Model. 56 (2016), pp. 1127–1131.
  • P. Gramatica, Principles of QSAR models validation: Internal and external, QSAR Comb. Sci. 26 (2007), pp. 694–701.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.