186
Views
8
CrossRef citations to date
0
Altmetric
Articles

Could we expect new praziquantel derivatives? A meta pharmacometrics/pharmacoinformatics analysis of all antischistosomal praziquantel derivatives found in the literature

, ORCID Icon, , ORCID Icon, , , & ORCID Icon show all
Pages 383-401 | Received 02 Feb 2019, Accepted 11 Apr 2019, Published online: 30 May 2019

References

  • L.D.P. Siqueira, D.A.F. Fontes, C.S.B. Aguilera, T.R.R. Timóteo, M.A. Ângelos, L.C.P.B.B. Silva, C.G. de Melo, L.A. Rolim, R.M.F. da Silva, and P.J.R. Neto, Schistosomiasis: Drugs used and treatment strategies, Acta Trop. 176 (2017), pp. 179–187. doi:10.1016/j.actatropica.2017.08.002.
  • WHO, Schistosomiasis. facts heet N°115 - Octobre 2017. Available at http://www.who.int/mediacentre/factsheets/fs115/en/.
  • D.G. Colley, A.L. Bustinduy, W.E. Secor, and C.H. King, Human schistosomiasis, Lancet 383 (2014), pp. 2253–2264. doi:10.1016/S0140-6736(13)61949-2.
  • J. Kincaid-Smith, O. Rey, E. Toulza, A. Berry, and J. Boissier, Emerging schistosomiasis in Europe: A need to quantify the risks, Trends Parasitol. 33 (2017), pp. 600–609. doi:10.1016/j.pt.2017.04.009.
  • S. Brooker, A.C. Clements, and D.A. Bundy, Global epidemiology, ecology and control of soil-transmitted helminth infections, Adv. Parasitol. 62 (2006), pp. 221–261.
  • B. Gryseels, K. Polman, J. Clerinx, and L. Kestens, Human schistosomiasis, Lancet London Engl. 368 (2006), pp. 1106–1118. doi:10.1016/S0140-6736(06)69440-3.
  • Glossário-Esquistossomose. Available at http://portal.saude.gov.br/portal/saude/profissional/area.cfm?id_area=1551.
  • 19th WHO model list of essential medicines. Available at http://www.who.int/medicines/publications/essentialmedicines/EML2015_8-May-15.pdf.
  • M.J. Doenhoff, D. Cioli, and J. Utzinger, Praziquantel: Mechanisms of action, resistance and new derivatives for schistosomiasis, Curr. Opin. Infect. Dis. 21 (2008), pp. 659–667. doi:10.1097/QCO.0b013e328318978f.
  • V.B.R. da Silva, B.R.K.L. Campos, J.F. de Oliveira, J.-L. Decout, and M.D.C.A. de Lima, Medicinal chemistry of antischistosomal drugs: Praziquantel and oxamniquine, Bioorg. Med. Chem. 25 (2017), pp. 3259–3277. doi:10.1016/j.bmc.2017.04.031.
  • J. Seubert, H. Thomas, P. Andrews, and M.P.G.M.B. Haftung. 2-Acyl-4-oxo-pyrazino-isoquinoline derivatives and process for the preparation thereof, Z. Arztl. Fortbild. 71 (1977), pp. 604–605.
  • P. Andrews, H. Thomas, R. Pohlke, and J. Seubert, Praziquantel, Med. Res. Rev. 3 (1983), pp. 147–200. doi:10.1002/(ISSN)1098-1128.
  • C.H. King and A.A. Mahmoud, Drugs five years later: Praziquantel, Ann. Intern. Med. 110 (1989), pp. 290–296. doi:10.7326/0003-4819-110-4-290.
  • Y. Dong, J. Chollet, M. Vargas, N.R. Mansour, Q. Bickle, Y. Alnouti, J. Huang, J. Keiser, and J.L. Vennerstrom., Praziquantel analogs with activity against juvenile Schistosoma mansoni, Bioorg. Med. Chem. Lett. 20 (2010), pp. 2481–2484. doi:10.1016/j.bmcl.2010.03.001.
  • W. Duan, S. Qiu, Y. Zhao, H. Sun, C. Qiao, and C. Xia, Praziquantel derivatives exhibit activity against both juvenile and adult Schistosoma japonicum, Bioorg. Med. Chem. Lett. 22 (2012), pp. 1587–1590. doi:10.1016/j.bmcl.2011.12.133.
  • W. Wang, L. Wang, and Y.-S. Liang, Susceptibility or resistance of praziquantel in human schistosomiasis: A review, Parasitol. Res. 111 (2012), pp. 1871–1877. doi:10.1007/s00436-012-2938-2.
  • V. Salvador-Recatalà and R.M. Greenberg, Calcium channels of schistosomes: Unresolved questions and unexpected answers, Wiley Interdiscip. Rev. Membr. Transp. Signal. 1 (2012), pp. 85–93. doi:10.1002/wmts.19.
  • M. Gnanasekar, A.M. Salunkhe, A.K. Mallia, Y.X. He, and R. Kalyanasundaram, Praziquantel affects the regulatory myosin light chain of Schistosoma mansoni, Antimicrob. Agents Chemother. 53 (2009), pp. 1054–1060. doi:10.1128/AAC.01222-08.
  • J.J. Feng, H.F. Guo, M.Y. Yao, and S.H. Xiao, Effects of mebendazole, albendazole, and praziquantel on glutathione S-transferase and superoxide dismutase of Echinococcus granulosus cyst wall harbored in mice, Zhongguo Yao Li Xue Bao 16 (1995), pp. 297–300.
  • M.H. El-Faham, M.M. Eissa, J.E. Igetei, E.I. Amer, S. Liddell, M.Z. El-Azzouni, and M.J. Doenhoff, Treatment of Schistosoma mansoni with miltefosine in vitro enhances serological recognition of defined worm surface antigens, PLoS Negl. Trop. Dis. 11 (2017), pp. e0005853. doi:10.1371/journal.pntd.0005853.
  • F. Angelucci, A. Basso, A. Bellelli, M. Brunori, L. Pica Mattoccia, and C. Valle, The anti-schistosomal drug praziquantel is an adenosine antagonist, Parasitology 134 (2007), pp. 1215–1221. doi:10.1017/S0031182007002600.
  • J.D. Chan, P.M. Cupit, G.S. Gunaratne, J.D. McCorvy, Y. Yang, K. Stoltz, T.R. Webb, P.I. Dosa, B.L. Roth, R. Abagyan, C. Cunningham, and J. Marchant, The anthelmintic praziquantel is a human serotoninergic G-protein-coupled receptor ligand, Nat. Commun. 8 (2017), pp. 1910. doi:10.1038/s41467-017-02084-0.
  • Cheminformatics models for inhibitors of Schistosoma mansoni thioredoxin glutathione reductase. Available at https://www.hindawi.com/journals/tswj/2014/957107/.
  • B.J. Neves, R.C. Braga, J.C.B. Bezerra, P.V.L. Cravo, and C.H. Andrade, In silico repositioning-chemogenomics strategy identifies new drugs with potential activity against multiple life stages of Schistosoma mansoni, PLoS Negl. Trop. Dis. 9 (2015), pp. e3435. doi:10.1371/journal.pntd.0003435.
  • L.G. Ferreira, G. Oliva, and A.D. Andricopulo, Target-based molecular modeling strategies for schistosomiasis drug discovery, Future Med. Chem. 7 (2015), pp. 753–764. doi:10.4155/fmc.15.21.
  • A. Zafar, S. Ahmad, A. Rizvi, and M. Ahmad, Novel non-peptide inhibitors against SmCL1 of Schistosoma mansoni: In silico elucidation, implications and evaluation via knowledge based drug discovery, PLoS ONE 10 (2015), pp. e0123996. doi:10.1371/journal.pone.0123996.
  • I. Akachukwu, O.O. Olubiyi, A. Kosisochukwu, M. C John, and N.N. Justina, Structure-based study of natural products with anti-schistosoma activity, Curr. Comput. Aided Drug Des. 13 (2017), pp. 91–100. doi:10.2174/1573409913666170119114859.
  • Schrödinger Release 2017–2: Phase, Schrödinger, LLC, New York, NY, 2017.
  • Schrödinger Release 2017–2: QikProp, Schrödinger, LLC, New York, NY, 2017.
  • R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2008.
  • S. Guglielmo, D. Cortese, F. Vottero, B. Rolando, V.P. Kommer, D.L. Williams, R. Fruttero, and A. Gasco, New praziquantel derivatives containing no-donor furoxans and related furazans as active agents against Schistosoma mansoni, Eur. J. Med. Chem. 84 (2014), pp. 135–145. doi:10.1016/j.ejmech.2014.07.007.
  • L. Dong, W. Duan, J. Chen, H. Sun, C. Qiao, and C. Xia, An artemisinin derivative of praziquantel as an orally active antischistosomal agent, PLoS ONE 9 (2014), pp. e112163. doi:10.1371/journal.pone.0112163.
  • J. Yang, J. Boissier, J.-L. Chen, H. Yao, S. Yang, A. Rognon, and C. Qiao, Design, synthesis and biological evaluation of praziquantel and endoperoxide conjugates as antischistosomal agents, Future Med. Chem. 7 (2015), pp. 713–725. doi:10.4155/fmc.15.20.
  • M. Patra, K. Ingram, V. Pierroz, S. Ferrari, B. Spingler, J. Keiser, and G. Gasser, Ferrocenyl derivatives of the anthelmintic praziquantel: Design, synthesis, and biological evaluation, J. Med. Chem. 55 (2012), pp. 8790–8798. doi:10.1021/jm301077m.
  • M. Patra, K. Ingram, V. Pierroz, S. Ferrari, B. Spingler, R.B. Gasser, J. Keiser, and G. Gasser, [(η(6)-Praziquantel)Cr(CO)3] derivatives with remarkable in vitro anti-schistosomal activity, Chem. Weinh. Bergstr. Ger. 19 (2013), pp. 2232–2235.
  • Y. Xie, Y. Li, Y. Wu, C. Liu, X. Li, X. Li, and X. Fan, Synthesis of fluorescent derivatives of praziquantel: Cell-imaging and interaction with Schistosoma japonicum cercariae, Org. Biomol. Chem. 11 (2013), pp. 5989–5993. doi:10.1039/c3ob41348a.
  • F. Ronketti, A.V. Ramana, X. Chao-Ming, L. Pica-Mattoccia, D. Cioli, and M.H. Todd, Praziquantel derivatives I: Modification of the aromatic ring, Bioorg. Med. Chem. Lett. 17 (2007), pp. 4154–4157. doi:10.1016/j.bmcl.2007.05.063.
  • M.M. Kamel, M.M. Anwar, A.M. Soliman, and H.F. Abdel-Hamid, In vitro antischistosomal evaluation of some newly synthesized praziquantel derivatives, Res. Chem. Intermed. 39 (2012), pp. 3417–3426. doi:10.1007/s11164-012-0854-9.
  • P.S. Sadhu, S.N. Kumar, M. Chandrasekharam, L. Pica-Mattoccia, D. Cioli, and V.J. Rao, Synthesis of new praziquantel analogues: Potential candidates for the treatment of schistosomiasis, Bioorg. Med. Chem. Lett. 22 (2012), pp. 1103–1106. doi:10.1016/j.bmcl.2011.11.108.
  • H. Liu, S. William, E. Herdtweck, S. Botros, and A. Dömling, MCR synthesis of praziquantel derivatives, Chem. Biol. Drug Des. 79 (2012), pp. 470–477. doi:10.1111/j.1747-0285.2011.01288.x.
  • L.K. Sharma, P.M. Cupit, T. Goronga, T.R. Webb, and C. Cunningham, Design and synthesis of molecular probes for the determination of the target of the anthelmintic drug praziquantel, Bioorg. Med. Chem. Lett. 24 (2014), pp. 2469–2472. doi:10.1016/j.bmcl.2014.04.014.
  • M.H. Abo-Ghalia and A.M. Soliman, Synthesis and study of the antischistosomal potency and induced biological parameters of a new 2-palmitoyl analogue of the universal antihelminthic praziquantel, Acta Pol. Pharm. 57 (2000), pp. 53–59.
  • W.L. Wang, L.J. Song, X. Chen, X.R. Yin, W.H. Fan, G.P. Wang, C.X. Yu, and B. Feng, Synthesis and SAR studies of praziquantel derivatives with activity against Schistosoma japonicum, Molecules 18 (2013), pp. 9163–9178. doi:10.3390/molecules18089163.
  • Z. Wang, J. Chen, and C. Qiao, Praziquantel derivatives with antischistosomal activity: Aromatic ring modification, Chem. Biol. Drug Des. 82 (2013), pp. 216–225. doi:10.1111/cbdd.2013.82.issue-2.
  • Y. Zheng, L. Dong, C. Hu, B. Zhao, C. Yang, C. Xia, and D. Sun, Development of chiral praziquantel analogues as potential drug candidates with activity to juvenile Schistosoma japonicum, Bioorg. Med. Chem. Lett. 24 (2014), pp. 4223–4226. doi:10.1016/j.bmcl.2014.07.039.
  • Schrödinger Release 2017–2: Canvas, Schrödinger, LLC, New York, NY, 2017.
  • W.L. Jorgensen, D. Maxwell, and J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, J. Am. Chem. Soc. 118 (1996), pp. 11225–11236. doi:10.1021/ja9621760.
  • K.S. Watts, P. Dalal, R.B. Murphy, W. Sherman, R.A. Friesner, and J.C. Shelley, ConfGen: A conformational search method for efficient generation of bioactive conformers, J. Chem. Inf. Model. 50 (2010), pp. 534–546. doi:10.1021/ci100015j.
  • S.L. Dixon, A.M. Smondyrev, and S.N. Rao, PHASE: A novel approach to pharmacophore modeling and 3D database searching, Chem. Biol. Drug Des. 67 (2006), pp. 370–372. doi:10.1111/j.1747-0285.2006.00384.x.
  • S.L. Dixon, A.M. Smondyrev, E.H. Knoll, S.N. Rao, D.E. Shaw, and R.A. Friesner, PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. methodology and preliminary results, J. Comput. Aided Mol. Des. 20 (2006), pp. 647–671. doi:10.1007/s10822-006-9043-5.
  • G. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (1978), pp. 461–464. doi:10.1214/aos/1176344136.
  • A. Borrego-Sánchez, C. Viseras, C. Aguzzi, and C.I. Sainz-Díaz, Molecular and crystal structure of praziquantel. Spectroscopic properties and crystal polymorphism, Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 92 (2016), pp. 266–275.
  • A.D. McNaught and A. Wilkinson, IUPAC. Compendium of Chemical Terminology, 2nd ed., The “Gold Book”, Blackwell Scientific Publications, Oxford, London, 1997.
  • X.-Q. Li, A. Björkman, T.B. Andersson, L.L. Gustafsson, and C.M. Masimirembwa, Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data, Eur. J. Clin. Pharmacol. 59 (2003), pp. 429–442. doi:10.1007/s00228-003-0636-9.
  • C. Lerch and G. Blaschke, Investigation of the stereoselective metabolism of praziquantel after incubation with rat liver microsomes by capillary electrophoresis and liquid chromatography–mass spectrometry, J. Chromatogr. B. Biomed. Sci. Appl. 708 (1998), pp. 267–275. doi:10.1016/S0378-4347(97)00638-5.
  • H. Meier and G. Blaschke, Investigation of Praziquantel metabolism in isolated rat hepatocytes, J. Pharm. Biomed. Anal. 26 (2001), pp. 409–415. doi:10.1016/S0731-7085(01)00417-4.
  • A.J.B. Melo, Y. Iamamoto, A.P.J. Maestrin, J.R.L. Smith, M.D. Santos, N.P. Lopes, and P.S. Bonato, Biomimetic oxidation of praziquantel catalysed by metalloporphyrins, J. Mol. Catal. Chem. 226 (2005), pp. 23–31. doi:10.1016/j.molcata.2004.09.015.
  • Z.S. Hendsch and B. Tidor, Do salt bridges stabilize proteins? A continuum electrostatic analysis, Protein Sci. Publ. Protein Soc. 3 (1994), pp. 211–226. doi:10.1002/pro.5560030206.
  • B.G. Tehan, E.J. Lloyd, M.G. Wong, W.R. Pitt, J.G. Montana, D.T. Manallack, and E. Gancia, Estimation of pKa using semiempirical molecular orbital methods. Part 1: Application to phenols and carboxylic acids, Quant. Struct.-Act. Relat. 21 (2002), pp. 457–472. doi:10.1002/1521-3838(200211)21:5<457::AID-QSAR457>3.0.CO;2-5.
  • P.H. Lee, S.N. Ayyampalayam, L.A. Carreira, M. Shalaeva, S. Bhattachar, R. Coselmon, S. Poole, E. Gifford, and F. Lombardo, In silico prediction of ionization constants of drugs, Mol. Pharm. 4 (2007), 498–512.
  • J.E. Donald, D.W. Kulp, and W.F. DeGrado, Salt bridges: Geometrically specific, designable interactions, Proteins Struct. Funct. Bioinf. 79 (2011), pp. 898–915. doi:10.1002/prot.22927.
  • D.A. Dougherty, The cation-π interaction, Acc. Chem. Res. 46 (2013), pp. 885–893. doi:10.1021/ar300265y.
  • M. Shalaeva, G. Caron, Y.A. Abramov, T.N. O’Connell, M.S. Plummer, G. Yalamanchi, K.A. Farley, G.H. Goetz, L. Philippe, and M.J. Shapiro, Integrating intramolecular hydrogen bonding (IMHB) considerations in drug discovery using ΔlogP as a tool, J. Med. Chem. 56 (2013), pp. 4870–4879. doi:10.1021/jm301850m.
  • P.W. Kenny, C.A. Montanari, I.M. Prokopczyk, J.F.R. Ribeiro, and G.R. Sartori, Hydrogen bond basicity prediction for medicinal chemistry design, J. Med. Chem. 59 (2016), pp. 4278–4288. doi:10.1021/acs.jmedchem.5b01946.
  • G.B. McGaughey, M. Gagné, and A.K. Rappé, π-Stacking interactions alive and well in proteins, J. Biol. Chem. 273 (1998), pp. 15458–15463. doi:10.1074/jbc.273.25.15458.
  • D.D. Boehr, A.R. Farley, G.D. Wright, and J.R. Cox, Analysis of the π-π stacking interactions between the aminoglycoside antibiotic kinase APH(3′)-IIIa and its nucleotide ligands, Chem. Biol. 9 (2002), pp. 1209–1217.
  • E. Persch, O. Dumele, and F. Diederich, Molecular recognition in chemical and biological systems, Angew. Chem. Int. Ed Engl. 54 (2015), pp. 3290–3327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.