288
Views
17
CrossRef citations to date
0
Altmetric
Articles

Insight into structural features of phenyltetrazole derivatives as ABCG2 inhibitors for the treatment of multidrug resistance in cancer

, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 457-475 | Received 19 Feb 2019, Accepted 02 May 2019, Published online: 03 Jun 2019

References

  • J.M. Seely and T. Alhassan, Screening for breast cancer in 2018—What should we be doing today? Curr. Oncol. 25 (2018), pp. S 115–S 124.
  • A. Sabt, O.M. Abdelhafez, R.S. El-Haggar, H.M. Madkour, W.M. Eldehna, E.E. El-Khrisy, M.A. Abdel-Rahman, and L.A. Rashed, Novel coumarin-6-sulfonamides as apoptotic anti-proliferative agents: Synthesis, in vitro biological evaluation, and QSAR studies, J. Enzyme Inhib. Med. Chem. 33 (2018), pp. 1095–1107. doi:10.1080/14756366.2018.1477137.
  • S. Kraege, K. Stefan, K. Juvale, T. Ross, T. Willmes, and M. Wiese, The combination of quinazoline and chalcone moieties leads to novel potent heterodimeric modulators of breast cancer resistance protein (BCRP/ABCG2), Eur. J. Med. Chem. 117 (2016), pp. 212–229. doi:10.1016/j.ejmech.2016.03.067.
  • E. Egido, R. MüLler, X. Li-Blatter, G. Merino, and A. Seelig, Predicting activators and inhibitors of the breast cancer resistance protein (ABCG2) and P-glycoprotein (ABCB1) based on mechanistic considerations, Mol. Pharm. 12 (2015), pp. 4026–4037.
  • M.E. Gantner, R.N. Peroni, J.F. Morales, M.L. Villalba, M.E. Ruiz, and A. Talevi, Development and validation of a computational model ensemble for the early detection of BCRP/ABCG2 substrates during the drug design stage, J. Chem. Inf. Model. 57 (2017), pp. 1868–1880. doi:10.1021/acs.jcim.7b00016.
  • S.M. Schmitt, K. Stefan, and M. Wiese, Pyrrolopyrimidine derivatives and purine analogs as novel activators of Multidrug Resistance-associated Protein 1 (MRP1, ABCC1), Biochim. Biophys. Acta. Biomembr. 1859 (2017), pp. 69–79. doi:10.1016/j.bbamem.2016.10.017.
  • M.J. Szafraniec, M. Szczygieł, K. Urbanska, and L. Fiedor, Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2), Drug Metab. Rev. 46 (2014), pp. 459–474.
  • M.H. Hasanabady and F. Kalalinia, ABCG2 inhibition as a therapeutic approach for overcoming multidrug resistance in cancer, J. Biosci. 41 (2016), pp. 313–324. doi:10.1007/s12038-016-9601-5.
  • O. Polgar, R.W. Robey, and S.E. Bates, ABCG2: Structure, function and role in drug response, Expert Opin. Drug Metab. Toxicol. 4 (2008), pp. 1–15. doi:10.1517/17425255.4.1.1.
  • M. Jani, C. Ambrus, R. Magnan, K.T. Jakab, E. Beéry, J.K. Zolnerciks, and P. Krajcsi, Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics, Arch. Toxicol. 88 (2014), pp. 1205–1248.
  • K. Kuchler, The ABC of ABCs: Multidrug resistance and genetic diseases, Febs J. 278 (2011), pp. 3189. doi:10.1111/j.1742-4658.2011.08234.x.
  • M.T. Kuo, Roles of multidrug resistance genes in breast cancer chemoresistance, Adv. Exp. Med. Biol. 608 (2007), pp. 23–30.
  • S. Velamakanni, S.L. Wei, T. Janvilisri, and H.W. van Veen, ABCG transporters: Structure, substrate specificities and physiological roles, J. Bioenergy Biomembr. 39 (2007), pp. 465–471. doi:10.1007/s10863-007-9122-x.
  • J. Gallus, K. Juvale, and M. Wiese, Characterization of 3-methoxy flavones for their interaction with ABCG2 as suggested by ATPase activity, Biochim. Biophys. Acta. 1838 (2014), pp. 2929–2938. doi:10.1016/j.bbamem.2014.08.003.
  • R.J. Ferreira, C.A. Bonito, M.N.D. Cordeiro, M.J.U. Ferreira, and D.J. Dos Santos, Structure-function relationships in ABCG2: Insights from molecular dynamics simulations and molecular docking studies, Sci. Rep. 8 (2018), pp. 6355. doi:10.1038/s41598-018-24602-w.
  • W. Mo and J.T. Zhang, Human ABCG2: Structure, function, and its role in multidrug resistance, Int. J. Biochem. Mol. Biol. 3 (2012), pp. 1–27.
  • M.F. Rosenberg, Z. Bikadi, E. Hazai, T. Starborg, L. Kelley, N.E. Chayen, and Q. Mao, Three-dimensional structure of the human breast cancer resistance protein (BCRP/ABCG2) in an inward-facing conformation, Acta. Crystallogr. D. Biol. Crystallogr. 71 (2015), pp. 1725–1735. doi:10.1107/S1399004715010676.
  • M. Videira, R.L. Reis, and M.A. Brito, Deconstructing breast cancer cell biology and the mechanisms of multidrug resistance, Biochim. Biophys. Acta. 1846 (2014), pp. 312–325.
  • K. Juvale and M. Wiese, Design of inhibitors of BCRP/ABCG2, Future Med. Chem. 7 (2015), pp. 1521–1527.
  • D. Peña‐Solórzano, S.A. Stark, B. König, C.A. Sierra, and C. Ochoa‐Puentes, ABCG2/BCRP: Specific and nonspecific modulators, Med. Res. Rev. 37 (2017), pp. 987–1050. doi:10.1002/med.21428.
  • A. Pick, H. Müller, and M. Wiese, Structure–activity relationships of new inhibitors of breast cancer resistance protein (ABCG2), Bioorg. Med. Chem. 16 (2008), pp. 8224–8236. doi:10.1016/j.bmc.2008.07.034.
  • A. Pick, W. Klinkhammer, and M. Wiese, Specific inhibitors of the breast cancer resistance protein (BCRP), Chem. Med. Chem. 5 (2010), pp. 1498–1505. doi:10.1002/cmdc.201000216.
  • F. Marighetti, K. Steggemann, M. Hanl, and M. Wiese, Synthesis and quantitative structure–Activity relationships of selective BCRP inhibitors, ChemMedChem. 8 (2013), pp. 125–135. doi:10.1002/cmdc.201200377.
  • S.C. KöHler and M. Wiese, HM30181 derivatives as novel potent and selective inhibitors of the breast cancer resistance protein (BCRP/ABCG2), J. Med. Chem. 58 (2015), pp. 3910–3921. doi:10.1021/acs.jmedchem.5b00188.
  • S. Bhargava, N. Adhikari, S.A. Amin, K. Das, S. Gayen, and T. Jha, Hydroxyethylamine derivatives as HIV-1 protease inhibitors: A predictive QSAR modelling study based on Monte Carlo optimization, SAR QSAR Environ. Res. 28 (2017), pp. 973–990.
  • T. Jha, N. Adhikari, A. Saha, and S.A. Amin, Multiple molecular modelling studies on some derivatives and analogues of glutamic acid as matrix metalloproteinase-2 inhibitors, SAR QSAR Environ. Res. 29 (2018), pp. 43–68.
  • S.C. Köhler, K. Silbermann, and M. Wiese, Phenyltetrazolyl-phenylamides: Substituent impact on modulation capability and selectivity toward the efflux protein ABCG2 and investigation of interaction with the transporter, Eur. J. Med. Chem. 124 (2016), pp. 881–895. doi:10.1016/j.ejmech.2016.09.010.
  • S.C. Köhler, S. Vahdati, M.S. Scholz, and M. Wiese, Structure activity relationships, multidrug resistance reversal and selectivity of heteroarylphenyl ABCG2 inhibitors, Eur. J. Med. Chem. 146 (2018), pp. 483–500. doi:10.1016/j.ejmech.2018.01.012.
  • Chem 3D Pro Version 5.0 And Chem Draw Ultra Version 5.0 Are Software Programs Developed by Cambridge Soft Corporation. USA. Available at http://www.cambridgesoft.com.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • P. Ambure, R.B. Aher, A. Gajewicz, T. Puzyn, and K. Roy, “NanoBRIDGES” software: Open access tools to perform QSAR and nano-QSAR modeling, Chemom. Intell. Lab. Syst. 147 (2015), pp. 1–13. doi:10.1016/j.chemolab.2015.07.007.
  • The simple, user-friendly and reliable online standalone tools freely. Available at http://dtclab.webs.com/software-tools. (Accessed on January 15, 2019).
  • D. Ballabio, V. Consonni, A. Mauri, M. Claeys-Bruno, M. Sergent, and R. Todeschini, A novel variable reduction method adapted from space-filling designs, Chemom. Intell. Lab. Syst. 136 (2014), pp. 147–154. doi:10.1016/j.chemolab.2014.05.010.
  • A.K. Halder, S.A. Amin, T. Jha, and S. Gayen, Insight into the structural requirements of pyrimidine-based phosphodiesterase 10A (PDE10A) inhibitors by multiple validated 3D QSAR approaches, SAR QSAR Environ. Res. 28 (2017), pp. 253–273.
  • S. Pirhadi, F. Shiri, and J.B. Ghasemi, Multivariate statistical analysis methods in QSAR, RSC Adv. 5 (2015), pp. 104635–104665. doi:10.1039/C5RA10729F.
  • A. Golbraikh and A. Tropsha, Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection, Mol. Diver 5 (2000), pp. 231–243.
  • A. Tropsha, Best practices for QSAR model development, validation, and exploitation, Mol. Inform. 29 (2010), pp. 476–488.
  • S.A. Amin, N. Adhikari, and T. Jha, Diverse classes of HDAC8 inhibitors: In search of molecular fingerprints that regulate activity, Future Med. Chem. 10 (2018), pp. 1589–1602.
  • R. Gaikwad, S.A. Amin, N. Adhikari, S. Ghorai, T. Jha, and S. Gayen, Identification of molecular fingerprints of phenylindole derivatives as cytotoxic agents: A multi-QSAR approach, Struct. Chem. 29 (2018), pp. 1095–1107.
  • Discovery Studio 3.0 (DS 3.0), Accelrys Inc., CA, USA, 2015. Available at www.accelrys.com
  • S.A. Amin, N. Adhikari, S. Bhargava, T. Jha, and S. Gayen, Structural exploration of hydroxyethylamines as HIV-1 protease inhibitors: New features identified, SAR QSAR Environ. Res 29 (2018), pp. 385–408.
  • T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Let. 27 (2006), pp. 861–874.
  • S.M. Jackson, I. Manolaridis, J. Kowal, M. Zechner, N.M. Taylor, M. Bause, S. Bauer, R. Bartholomaeus, G. Bernhardt, B. Koenig, and A. Buschauer, Structural basis of small-molecule inhibition of human multidrug transporter ABCG2, Nat. Struct. Mol. Biol. 25, (2018), pp. 333–340. doi:10.1038/s41594-018-0043-7.
  • Autodock Tools 1.5.6 (ADT)/MGL Tools 1.5.6, The Scripps Research Institute, CA, USA, 2012. Available at http://mgltools.scripps.edu
  • O. Trott and A.J. Olson, AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J. Comput. Chem. 31 (2010), pp. 455–461.
  • S.A. Amin, P. Bhattacharya, S. Basak, S. Gayen, A. Nandy, and A. Saha, Pharmacoinformatics study of piperolactam a from Piper beetle root as new lead for nonsteroidal anti fertility drug development, Comput. Biol. Chem. 67 (2017), pp. 213–224.
  • S.A. Amin, N. Adhikari, T. Jha, and S. Gayen, An Integrated Multi-QSAR modeling approach for designing knoevenagel-type indoles with enhancing cytotoxic profiles, Curr. Comput.-Aided Drug Des. 13 (2017), pp. 336–345.
  • A.K. Tiwari, K. Sodani, C.L. Dai, A.H. Abuznait, S. Singh, Z.J. Xiao, A. Patel, T.T. Talele, L. Fu, A. Kaddoumi, and J.M. Gallo, Nilotinib potentiates anticancer drug sensitivity in murine ABCB1-, ABCG2-, and ABCC10-multidrug resistance xenograft models, Cancer Lett. 328 (2013), pp. 307–317. doi:10.1016/j.canlet.2012.10.001.
  • The PyMOL Molecular Graphics System, Schrödinger, LLC, USA. Available at https://pymol.org
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • L.H. Hall and L.B. Kier, Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information, J. Chem. Infor. Comput. Sci. 35 (1995), pp. 1039–1045. doi:10.1021/ci00028a014.
  • K. Roy, S. Kar, and R.N. Das, Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment, Academic Press, New York 2015.
  • L. Saíz-Urra, M.P. Gonzalez, and M. Teijeira, 2D-autocorrelation descriptors for predicting cytotoxicity of naphthoquinone ester derivatives against oral human epidermoid carcinoma, Bioorg. Med. Chem. 15 (2007), pp. 3565–3571. doi:10.1016/j.bmc.2007.02.032.
  • B. Hollas, An analysis of the autocorrelation descriptor for molecules, J. Math. Chem. 33 (2003), pp. 91–101. doi:10.1023/A:1023247831238.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.