173
Views
3
CrossRef citations to date
0
Altmetric
Articles

13C NMR chemical shift prediction of diverse chemical compounds

&
Pages 477-490 | Received 14 Feb 2019, Accepted 13 May 2019, Published online: 02 Jun 2019

References

  • B. Zheng, L. Deng, H. Liu, X. Yu, Z. Wang, X. Yang, and P. Yi, NMR and theoretical study on the coordination interactions between peroxovanadium(V) complex and bisubstituted pyridine ligands, J, Coord. Chem. 66 (2013), pp. 2558–2566. doi:10.1080/00958972.2013.810732.
  • X. Yu, L. Deng, H. Tao, B. Jiang, and X. Li, NMR and theoretical study on the coordination interaction between peroxovanadium(V) complexes and 5-amino-1,10-phenanthroline,J. Coord. Chem. 67 (2014), pp. 2315–2322. doi:10.1080/00958972.2014.880783.
  • W. Xia, J. Zhang, X. Yu, L. Yang, and X. Li, NMR and theoretical study on the linking properties of peroxovanadium(V) complexes with the 3-aminomethyl-pyridine derivatives, J. Coord. Chem. 70 (2017), pp. 1882–1892. doi:10.1080/00958972.2017.1328736.
  • J. Devillers, 2D and 3D structure–Activity modelling of mosquito repellents: A review, SAR QSAR Environ. Res 29 (2018), pp. 693–723.
  • M.G. Chini, C.R. Jones, A. Zampella, M.V. D’Auria, B. Renga, S. Fiorucci, C.P. Butts, and G. Bifulco, Quantitative NMR-derived interproton distances combined with quantum mechanical calculations of 13C chemical shifts in the stereochemical determination of conicasterol F, a nuclear receptor ligand from Theonella swinhoei, J. Org. Chem. 77 (2012), pp. 1489−1496. doi:10.1021/jo2023763.
  • J.M. Fonville, M. Swart, Z. Vokáčová, V. Sychrovský, J.E. Šponer, J. Šponer, C.W. Hilbers, F.M. Bickelhaupt, and S.S. Wijmenga, Chemical shifts in nucleic acids studied by density functional theory calculations and comparison with experiment, Chem. Eur. J. 18 (2012), pp. 12372–12387. doi:10.1002/chem.201103593.
  • Y. Yi, B. Adrjan, J. Wlodarz, J. Li, K. Jackowski, and S. Roszak, NMR measurements and DFT studies of nuclear magnetic shielding in emodin and chuanxiongzine molecules, J. Mol. Struct. 1166 (2018), pp. 304–310. doi:10.1016/j.molstruc.2018.04.053.
  • L. He, Molecular Structural Characterization and Further Quantitative Structural-Spectrum Relationships for Organic Compounds, Chongqing University, Chongqing, China, 2008.
  • J. Tong, S. Liu, P. Zhou, Zhang, and S. Li, Quantitative structure spectroscopy relationships of carbon-13 nuclear magnetic resonance chemical shifts of steroids, J. Mol. Graph. Model 26 (2007), pp. 86–92. doi:10.1016/j.jmgm.2006.09.011.
  • M. Shahlaei, Descriptor selection methods in quantitative structure−activity relationship studies: A review study, Chem. Rev 113 (2013), pp. 8093−8103.
  • M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc, Wallingford CT, 2009.
  • C. Adamo and V. Barone, Toward reliable density functional methods without adjustable parameters: The PBE0 model, J. Chem. Phys. 110 (1999), pp. 6158–6169.
  • A. Petersson and M.A. Al-Laham, A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms, J. Chem. Phys 94 (1991), pp. 6081–6090. doi:10.1063/1.460447.
  • A. Rácz, D. Bajusz, and K. Héberger, Modelling methods and cross-validation variants in QSAR: A multi-level analysis, SAR QSAR Environ. Res 29 (2018), pp. 661–674.
  • F.R. Burden and D.A. Winkler, Relevance vector machines: Sparse classification methods for QSAR, J. Chem. Inf. Model. 55 (2015), pp. 1529–1534. doi:10.1021/acs.jcim.5b00261.
  • I. Luque Ruiz and M.Á. Gómez-Nieto, Robust QSAR prediction models for volume of distribution at steady state in humans using relative distance measurements, SAR QSAR Environ. Res 29 (2018), pp. 529–550.
  • J. Shadmanesh, A.P. Jadid, Z. Azari, M. Niazi, and M.S. Aghbolagh, QSAR study of active human glucagon receptor antagonists by SW-MLR and SW-SVM methods, Med. Chem. Res. 23 (2014), pp. 2639–2650.
  • I. Luque Ruiz and M.Á. Gómez-Nieto, QSAR classification and regression models for β-secretase inhibitors using relative distance matrices, SAR QSAR Environ. Res 29 (2018), pp. 355–383.
  • J.P. Doucet, E. Papa, A. Doucet-Panaye, and J. Devillers, QSAR models for predicting the toxicity of piperidine derivatives against Aedes aegypti, SAR QSAR Environ. Res 28 (2017), pp. 451–470.
  • Z.Y. Algamal, M.K. Qasim, and H.M. Ali, A QSAR classification model for neuraminidase inhibitors of influenza A viruses (H1N1) based on weighted penalized support vector machine, SAR QSAR Environ. Res 28 (2017), pp. 415–426.
  • M.K. Qasim, Z.Y. Algamal, and H.M. Ali, A binary QSAR model for classifying neuraminidase inhibitors of influenza A viruses (H1N1) using the combined minimum redundancy maximum relevancy criterion with the sparse support vector machine, SAR QSAR Environ. Res 29 (2018), pp. 517–527.
  • X. Yu, Y. Yu, and Q. Zeng, Support vector machine classification of streptavidin-binding aptamers, PLoS ONE 9 (2014), pp. e99964. doi:10.1371/journal.pone.0099964.
  • X. Yu and R. Yu, Setschenow constant prediction based on the IEF-PCM calculations, Ind. Eng. Chem. Res. 52 (2013), pp. 11182−11188. doi:10.1021/ie400001u.
  • K. Li, L. Wang, J. Wu, Q. Zhang, G. Liao, and L. Su, Using GA-SVM for defect inspection of flip chips based on vibration signals, Microelect. Reliab 81 (2018), pp. 159–166. doi:10.1016/j.microrel.2017.12.032.
  • C.C. Chang and C.J. Lin, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol. 2 (2011), pp. 27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.