470
Views
23
CrossRef citations to date
0
Altmetric
Articles

Ecotoxicological QSAR modelling of organic chemicals against Pseudokirchneriella subcapitata using consensus predictions approach

& ORCID Icon
Pages 665-681 | Received 10 Mar 2019, Accepted 23 Jul 2019, Published online: 02 Sep 2019

References

  • K. Khan, P.M. Khan, G. Lavado, C. Valsecchi, J. Pasqualini, D. Baderna, M. Marzo, A. Lombardo, K. Roy, and E. Benfenati, QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors, Chemosphere 229 (2019), pp. 8–17. doi:10.1016/j.chemosphere.2019.04.204.
  • C. Plagellat, T. Kupper, R. Furrer, L.F. De Alencastro, D. Grandjean, and J. Tarradellas, Concentrations and specific loads of UV filters in sewage sludge originating from a monitoring network in Switzerland, Chemosphere 62 (2006), pp. 915–925. doi:10.1016/j.chemosphere.2005.05.024.
  • W. Peysson and E. Vulliet, Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time--of-flight-mass spectrometry, J. Chromatogr. 1290 (2013), pp. 46–61. doi:10.1016/j.chroma.2013.03.057.
  • C. Plagellat, T. Kupper, L.F. De Alencastro, D. Grandjean, and J. Tarradellas, Biocides in sewage sludge: Quantitative determination in some Swiss wastewater treatment plants, Bull Environ. Contam. Toxicol. 73 (2004), pp. 794–801. doi:10.1007/s00128-004-0497-7.
  • M. Petrovic and D. Barcelo, Determination of anionic and nonionic surfactants, their degradation products, and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry, Anal. Chem. 72 (2000), pp. 4560–4567. doi:10.1021/ac000306o.
  • H. Sanderson, D.J. Johnson, C.J. Wilson, R.A. Brain, and K.R. Solomon, Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening, Toxicol. Lett. 144 (2003), pp. 383–395.
  • D. Pearce, G. Atkinson, and S. Mourato, Organisation for Economic Co-operation and Development, 2006, Cost-benefit analysis and the environment: Recent developments, Organisation for Economic Co-operation and Development, Paris, 2006.
  • L. Musset, Current Approaches in the Statistical Analysis of Ecotoxicity Data: A Guidance to Application, OECD Series on testing and assessment, Paris, 2006, pp. 54.
  • S. Kooijman, An alternative for NOEC exists, but the standard model has to be abandoned first, oikos, 75 (1996), pp. 310–316.
  • A. Beasley, S.E. Belanger, J.L. Brill, and R.R. Otter, Evaluation and comparison of the relationship between NOEC and EC10 or EC20 values in chronic Daphnia toxicity testing, Environ. Toxicol. Chem. 34 (2015), pp. 2378–2384. doi:10.1002/etc.3086.
  • Y. Iwasaki, K. Kotani, S. Kashiwada, and S. Masunaga, Does the choice of NOEC or EC10 affect the hazardous concentration for 5% of the species? Environ. Sci. Technol. 49 (2015), pp. 9326–9330. doi:10.1021/acs.est.5b02069.
  • J.N. Shieh, M.R. Chao, and C.Y. Chen, Statistical comparisons of the no-observed-effect concentration and the effective concentration at 10% inhibition (EC10) in algal toxicity tests, Wat. Sci. Tech. 43 (2001), pp. 141–146. doi:10.2166/wst.2001.0083.
  • C.I. Weber, W. Peltier, T. Norberg-King, W. Horning, and F. Kessler, Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, Environmental Protection Agency, Cincinnati, OH (USA), 1989.
  • A.J. Bailer, J.T. Oris, K. See, M.R. Hughes, and R. Schaefer, Defining and evaluating impact in environmental toxicology, Environmetrics 14 (2003), pp. 235–243. doi:10.1002/(ISSN)1099-095X.
  • P.A. Lewis, D.J. Klemm, J.M. Lazorchak, T.J. Norberg-King, W.H. Peltier, and M.A. Heber, Short-term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, US Environmental Protection Agency, Environmental Monitoring Systems Laboratory, Cincinnati, 1994.
  • E. Papa and P. Gramatica, QSPR as a support for the EU REACH regulation and rational design of environmentally safer chemicals: PBT identification from molecular structure, Green Chem. 12 (2010), pp. 836–843. doi:10.1039/b923843c.
  • E. Commission, Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, Off, J. Eur. Union. 396 (2006), pp. 374–375.
  • K. Khan, S. Kar, H. Sanderson, K. Roy, and J. Leszczynski, Ecotoxicological assessment of pharmaceuticals using computational toxicology approaches: QSTR and interspecies QTTR modeling, MOL2NET 2017, International Conference on Multidisciplinary Sciences, 3rd edition, Basque Country, Multidisciplinary Digital Publishing Institute, 2018.
  • J.C. Dearden, The History and Development of Quantitative Structure-activity Relationships (qsars), in Oncology: Breakthroughs in Research and practice, IGI Global, Pennsylvania, 2017, pp. 67–117.
  • K. Khan, D. Baderna, C. Cappelli, C. Toma, A. Lombardo, K. Roy, and E. Benfenati, Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis, Aquat. Toxicol. 212 (2019), pp. 162–174. doi:10.1016/j.aquatox.2019.05.011.
  • K. Khan, E. Benfenati, and K. Roy, Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds, Ecotoxicol. Environ. Saf. 168 (2019), pp. 287–297. doi:10.1016/j.ecoenv.2018.10.060.
  • K. Roy, R.N. Das, P. Ambure, and R.B. Aher, Be aware of error measures. Further studies on validation of predictive QSAR models, Chemom. Intell. Lab. Syst. 152 (2016), pp. 18–33. doi:10.1016/j.chemolab.2016.01.008.
  • K. Roy and I. Mitra, On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design, Comb. Chem. High Throughput Screen. 14 (2011), pp. 450–474.
  • K.O. Kusk, A.M. Christensen, and N. Nyholm, Algal growth inhibition test results of 425 organic chemical substances, Chemosphere 204 (2018), pp. 405–412. doi:10.1016/j.chemosphere.2018.04.047.
  • P. Gramatica, S. Cassani, and A. Sangion, Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives design, Green Chem. 18 (2016), pp. 4393–4406. doi:10.1039/C5GC02818C.
  • C.W. Yap, PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints, J. Comput. Chem. 32 (2011), pp. 1466–1474. doi:10.1002/jcc.21707.
  • A. Mauri, V. Consonni, M. Pavan, and R. Todeschini, Dragon software: An easy approach to molecular descriptor calculations, Match 56 (2006), pp. 237–248.
  • K. Khan and K. Roy, Ecotoxicological modelling of cosmetics for aquatic organisms: A QSTR approach, SAR QSAR Environ. Res. 28 (2017), pp. 567–594. doi:10.1080/1062936X.2017.1352621.
  • H. Golmohammadi, Z. Dashtbozorgi, and W.E. Acree Jr, Quantitative structure–activity relationship prediction of blood-to-brain partitioning behavior using support vector machine, Eur. J. Pharm. Sci. 47 (2012), pp. 421–429. doi:10.1016/j.ejps.2012.06.021.
  • R.W. Kennard and L.A. Stone, Computer aided design of experiments, Technometrics 11 (1969), pp. 137–148. doi:10.1080/00401706.1969.10490666.
  • P.M. Khan and K. Roy, Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR), Expert Opin. Drug Discov. 13 (2018), pp. 1075–1089. doi:10.1080/17460441.2018.1542428.
  • S. Wold, M. Sjostrom, and L. Eriksson, PLS-regression: A basic tool of chemometrics, Chemom. Intell. Lab. Syst. 58 (2001), pp. 109–130. doi:10.1016/S0169-7439(01)00155-1.
  • K. Roy, I. Mitra, P.K. Ojha, S. Kar, R.N. Das, and H. Kabir, Introduction of rm2 (rank) metric incorporating rank-order predictions as an additional tool for validation of QSAR/QSPR models, Chemom. Intell. Lab. Syst. 118 (2012), pp. 200–210. doi:10.1016/j.chemolab.2012.06.004.
  • K. Roy, P. Ambure, S. Kar, and P.K. Ojha, Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J. Chemom. 32 (2018), pp. e2992. doi:10.1002/cem.2992.
  • R. Todeschini, V. Consonni, A. Mauri, and M. Pavan, DRAGON-Software for the Calculation of Molecular Descriptors, Web version 3, Milan, Italy, 2004.
  • K. Khan, K. Roy, and E. Benfenati, Ecotoxicological QSAR modeling of endocrine disruptor chemicals, J. Hazard. Mater. 369 (2019), pp. 707–718. doi:10.1016/j.jhazmat.2019.02.019.
  • J.A. Padron, R. Carrasco, and R.F. Pellon, Molecular descriptor based on a molar refractivity partition using Randic-type graph-theoretical invariant, J. Pharm. Pharmaceut. Sci. 5 (2002), pp. 258–266.
  • P. Sharma, N. Rane, and V.K. Gurram, Synthesis and QSAR studies of pyrimido [4, 5-d] pyrimidine-2, 5-dione derivatives as potential antimicrobial agents, Bioorg. Med. Chem. Lett. 14 (2004), pp. 4185–4190. doi:10.1016/j.bmcl.2004.06.014.
  • K. Khan, S. Kar, H. Sanderson, K. Roy, and J. Leszczynski, Ecotoxicological modeling, ranking and prioritization of pharmaceuticals using QSTR and i‐QSTTR approaches: Application of 2D and fragment based descriptors, Mol. Inform. 25 (2018). doi:10.1002/minf.201800078.
  • K. Roy, P. Ambure, and S. Kar, How precise are our quantitative structure–activity relationship derived predictions for new query chemicals? ACS Omega 3 (2018), pp. 11392–11406. doi:10.1021/acsomega.8b01647.
  • A. Furuhama, K. Hasunuma, T.I. Hayashi, and N. Tatarazako, Predicting algal growth inhibition toxicity: Three-step strategy using structural and physicochemical properties, SAR QSAR Environ. Res. 27 (2016), pp. 343–362. doi:10.1080/1062936X.2016.1174151.
  • A.A. Lagunin, A.V. Zakharov, D.A. Filimonov, and V.V. Poroikov, A new approach to QSAR modelling of acute toxicity, SAR QSAR Environ. Res. 18 (2007), pp. 285–298. doi:10.1080/10629360701304253.
  • F. Ding, Z. Wang, X. Yang, L. Shi, J. Liu, and G. Chen, Development of classification models for predicting chronic toxicity of chemicals to Daphnia magna and Pseudokirchneriella subcapitata, SAR QSAR Environ. Res. 30 (2019), pp. 39–50. doi:10.1080/1062936X.2018.1545694.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.